BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 28705792)

  • 1. Deletion of Fstl1 (Follistatin-Like 1) From the Endocardial/Endothelial Lineage Causes Mitral Valve Disease.
    Prakash S; Borreguero LJJ; Sylva M; Flores Ruiz L; Rezai F; Gunst QD; de la Pompa JL; Ruijter JM; van den Hoff MJB
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):e116-e130. PubMed ID: 28705792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress-induced remodelling of the mitral valve: a model for leaflet thickening and superimposed tissue formation in mitral valve disease.
    Kruithof BPT; Paardekooper L; Hiemstra YL; Goumans MJ; Palmen M; Delgado V; Klautz RJM; Ajmone Marsan N
    Cardiovasc Res; 2020 Apr; 116(5):931-943. PubMed ID: 31497851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of Axin2 results in impaired heart valve maturation and subsequent myxomatous valve disease.
    Hulin A; Moore V; James JM; Yutzey KE
    Cardiovasc Res; 2017 Jan; 113(1):40-51. PubMed ID: 28069701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic and transcriptomic studies suggest early left ventricular dysfunction in a preclinical model of severe mitral regurgitation.
    Corporan D; Onohara D; Amedi A; Saadeh M; Guyton RA; Kumar S; Padala M
    J Thorac Cardiovasc Surg; 2021 Mar; 161(3):961-976.e22. PubMed ID: 33277035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human pre-valvular endocardial cells derived from pluripotent stem cells recapitulate cardiac pathophysiological valvulogenesis.
    Neri T; Hiriart E; van Vliet PP; Faure E; Norris RA; Farhat B; Jagla B; Lefrancois J; Sugi Y; Moore-Morris T; Zaffran S; Faustino RS; Zambon AC; Desvignes JP; Salgado D; Levine RA; de la Pompa JL; Terzic A; Evans SM; Markwald R; Pucéat M
    Nat Commun; 2019 Apr; 10(1):1929. PubMed ID: 31028265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome.
    Ng CM; Cheng A; Myers LA; Martinez-Murillo F; Jie C; Bedja D; Gabrielson KL; Hausladen JM; Mecham RP; Judge DP; Dietz HC
    J Clin Invest; 2004 Dec; 114(11):1586-92. PubMed ID: 15546004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyaluronidase 2 Deficiency Causes Increased Mesenchymal Cells, Congenital Heart Defects, and Heart Failure.
    Chowdhury B; Xiang B; Liu M; Hemming R; Dolinsky VW; Triggs-Raine B
    Circ Cardiovasc Genet; 2017 Jan; 10(1):e001598. PubMed ID: 28196902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BMP2 expression in the endocardial lineage is required for AV endocardial cushion maturation and remodeling.
    Saxon JG; Baer DR; Barton JA; Hawkins T; Wu B; Trusk TC; Harris SE; Zhou B; Mishina Y; Sugi Y
    Dev Biol; 2017 Oct; 430(1):113-128. PubMed ID: 28790014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Altered Responsiveness to TGFβ and BMP and Increased CD45+ Cell Presence in Mitral Valves Are Unique Features of Ischemic Mitral Regurgitation.
    Castillero E; Howsmon DP; Rego BV; Keeney SJ; Driesbaugh KH; Kawashima T; Xue (薛应騛) Y; Camillo C; George I; Gorman RC; Gorman JH; Sacks MS; Levy RJ; Ferrari G
    Arterioscler Thromb Vasc Biol; 2021 Jun; 41(6):2049-2062. PubMed ID: 33827255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative pathology of human and canine myxomatous mitral valve degeneration: 5HT and TGF-β mechanisms.
    Oyama MA; Elliott C; Loughran KA; Kossar AP; Castillero E; Levy RJ; Ferrari G
    Cardiovasc Pathol; 2020; 46():107196. PubMed ID: 32006823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lineage and morphogenetic analysis of the cardiac valves.
    de Lange FJ; Moorman AF; Anderson RH; Männer J; Soufan AT; de Gier-de Vries C; Schneider MD; Webb S; van den Hoff MJ; Christoffels VM
    Circ Res; 2004 Sep; 95(6):645-54. PubMed ID: 15297379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging pathogenic mechanisms in human myxomatous mitral valve: lessons from past and novel data.
    Hulin A; Deroanne C; Lambert C; Defraigne JO; Nusgens B; Radermecker M; Colige A
    Cardiovasc Pathol; 2013; 22(4):245-50. PubMed ID: 23261354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myocardial Infarction Alters Adaptation of the Tethered Mitral Valve.
    Dal-Bianco JP; Aikawa E; Bischoff J; Guerrero JL; Hjortnaes J; Beaudoin J; Szymanski C; Bartko PE; Seybolt MM; Handschumacher MD; Sullivan S; Garcia ML; Mauskapf A; Titus JS; Wylie-Sears J; Irvin WS; Chaput M; Messas E; Hagège AA; Carpentier A; Levine RA;
    J Am Coll Cardiol; 2016 Jan; 67(3):275-87. PubMed ID: 26796392
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiocrine FSTL1 (Follistatin-Like Protein 1) Insufficiency Leads to Atrial and Venous Wall Fibrosis via SMAD3 Activation.
    Jiang H; Zhang L; Liu X; Sun W; Kato K; Chen C; Li X; Li T; Sun Z; Han W; Zhang F; Xiao Q; Yang Z; Hu J; Qin Z; Adams RH; Gao X; He Y
    Arterioscler Thromb Vasc Biol; 2020 Apr; 40(4):958-972. PubMed ID: 32078339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tenascin C promotes valvular remodeling in two large animal models of ischemic mitral regurgitation.
    Hamza O; Kiss A; Kramer AM; Trojanek S; Abraham D; Acar E; Nagel F; Tretter VE; Kitzwögerer M; Podesser BK
    Basic Res Cardiol; 2020 Dec; 115(6):76. PubMed ID: 33258993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-Wide Association Study-Driven Gene-Set Analyses, Genetic, and Functional Follow-Up Suggest GLIS1 as a Susceptibility Gene for Mitral Valve Prolapse.
    Yu M; Georges A; Tucker NR; Kyryachenko S; Toomer K; Schott JJ; Delling FN; Fernandez-Friera L; Solis J; Ellinor PT; Levine RA; Slaugenhaupt SA; Hagège AA; Dina C; Jeunemaitre X; Milan DJ; Norris RA; Bouatia-Naji N
    Circ Genom Precis Med; 2019 May; 12(5):e002497. PubMed ID: 31112420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibroblasts in an endocardial fibroelastosis disease model mainly originate from mesenchymal derivatives of epicardium.
    Zhang H; Huang X; Liu K; Tang J; He L; Pu W; Liu Q; Li Y; Tian X; Wang Y; Zhang L; Yu Y; Wang H; Hu R; Wang F; Chen T; Wang QD; Qiao Z; Zhang L; Lui KO; Zhou B
    Cell Res; 2017 Sep; 27(9):1157-1177. PubMed ID: 28809397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequential Ligand-Dependent Notch Signaling Activation Regulates Valve Primordium Formation and Morphogenesis.
    MacGrogan D; D'Amato G; Travisano S; Martinez-Poveda B; Luxán G; Del Monte-Nieto G; Papoutsi T; Sbroggio M; Bou V; Gomez-Del Arco P; Gómez MJ; Zhou B; Redondo JM; Jiménez-Borreguero LJ; de la Pompa JL
    Circ Res; 2016 May; 118(10):1480-97. PubMed ID: 27056911
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A New Role for the Aldosterone/Mineralocorticoid Receptor Pathway in the Development of Mitral Valve Prolapse.
    Ibarrola J; Garcia-Peña A; Matilla L; Bonnard B; Sádaba R; Arrieta V; Alvarez V; Fernández-Celis A; Gainza A; Navarro A; Alvarez de la Rosa D; Rossignol P; Jaisser F; López-Andrés N
    Circ Res; 2020 Jul; 127(3):e80-e93. PubMed ID: 32329663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ubiquitin Pathway Is Associated with Worsening Left Ventricle Function after Mitral Valve Repair: A Global Gene Expression Study.
    Tsai FC; Chang GJ; Lai YJ; Chang SH; Chen WJ; Yeh YH
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32708358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.