These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28705809)

  • 21. Spliceosome component SF3B1 as novel prognostic biomarker and therapeutic target for prostate cancer.
    Jiménez-Vacas JM; Herrero-Aguayo V; Gómez-Gómez E; León-González AJ; Sáez-Martínez P; Alors-Pérez E; Fuentes-Fayos AC; Martínez-López A; Sánchez-Sánchez R; González-Serrano T; López-Ruiz DJ; Requena-Tapia MJ; Castaño JP; Gahete MD; Luque RM
    Transl Res; 2019 Oct; 212():89-103. PubMed ID: 31344348
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tumor suppressor role of RBM22 in prostate cancer acting as a dual-factor regulating alternative splicing and transcription of key oncogenic genes.
    Jiménez-Vacas JM; Montero-Hidalgo AJ; Gómez-Gómez E; Sáez-Martínez P; Fuentes-Fayos AC; Closa A; González-Serrano T; Martínez-López A; Sánchez-Sánchez R; López-Casas PP; Sarmento-Cabral A; Olmos D; Eyras E; Castaño JP; Gahete MD; Luque RM
    Transl Res; 2023 Mar; 253():68-79. PubMed ID: 36089245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of WNT10B in normal prostate gland development and prostate cancer.
    Madueke I; Hu WY; Hu D; Swanson SM; Vander Griend D; Abern M; Prins GS
    Prostate; 2019 Oct; 79(14):1692-1704. PubMed ID: 31433503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulatory Role of mir-203 in Prostate Cancer Progression and Metastasis.
    Saini S; Majid S; Yamamura S; Tabatabai L; Suh SO; Shahryari V; Chen Y; Deng G; Tanaka Y; Dahiya R
    Clin Cancer Res; 2011 Aug; 17(16):5287-98. PubMed ID: 21159887
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo.
    Ciccarelli C; Di Rocco A; Gravina GL; Mauro A; Festuccia C; Del Fattore A; Berardinelli P; De Felice F; Musio D; Bouché M; Tombolini V; Zani BM; Marampon F
    J Cancer Res Clin Oncol; 2018 Sep; 144(9):1685-1699. PubMed ID: 29959569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternative splicing of NF-YA promotes prostate cancer aggressiveness and represents a new molecular marker for clinical stratification of patients.
    Belluti S; Semeghini V; Rigillo G; Ronzio M; Benati D; Torricelli F; Reggiani Bonetti L; Carnevale G; Grisendi G; Ciarrocchi A; Dominici M; Recchia A; Dolfini D; Imbriano C
    J Exp Clin Cancer Res; 2021 Nov; 40(1):362. PubMed ID: 34782004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization and sub-cellular localization of SS1R, SS2R, and SS5R in human late-stage prostate cancer cells: effect of mono- and bi-specific somatostatin analogs on cell growth.
    Ruscica M; Magni P; Steffani L; Gatto F; Albertelli M; Rametta R; Valenti L; Ameri P; Magnaghi V; Culler MD; Minuto F; Ferone D; Arvigo M
    Mol Cell Endocrinol; 2014 Feb; 382(2):860-70. PubMed ID: 24211300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CAPE suppresses migration and invasion of prostate cancer cells via activation of non-canonical Wnt signaling.
    Tseng JC; Lin CY; Su LC; Fu HH; Yang SD; Chuu CP
    Oncotarget; 2016 Jun; 7(25):38010-38024. PubMed ID: 27191743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeted inhibition of the KLF6 splice variant, KLF6 SV1, suppresses prostate cancer cell growth and spread.
    Narla G; DiFeo A; Yao S; Banno A; Hod E; Reeves HL; Qiao RF; Camacho-Vanegas O; Levine A; Kirschenbaum A; Chan AM; Friedman SL; Martignetti JA
    Cancer Res; 2005 Jul; 65(13):5761-8. PubMed ID: 15994951
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Proteome of Primary Prostate Cancer.
    Iglesias-Gato D; Wikström P; Tyanova S; Lavallee C; Thysell E; Carlsson J; Hägglöf C; Cox J; Andrén O; Stattin P; Egevad L; Widmark A; Bjartell A; Collins CC; Bergh A; Geiger T; Mann M; Flores-Morales A
    Eur Urol; 2016 May; 69(5):942-52. PubMed ID: 26651926
    [TBL] [Abstract][Full Text] [Related]  

  • 31. S100A16 promotes cell proliferation and metastasis via AKT and ERK cell signaling pathways in human prostate cancer.
    Zhu W; Xue Y; Liang C; Zhang R; Zhang Z; Li H; Su D; Liang X; Zhang Y; Huang Q; Liu M; Li L; Li D; Zhao AZ; Liu Y
    Tumour Biol; 2016 Sep; 37(9):12241-12250. PubMed ID: 27240591
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CMTM5 is reduced in prostate cancer and inhibits cancer cell growth in vitro and in vivo.
    Xiao Y; Yuan Y; Zhang Y; Li J; Liu Z; Zhang X; Sheng Z; Xu T; Wang X
    Clin Transl Oncol; 2015 Jun; 17(6):431-7. PubMed ID: 25387568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PAGE4 promotes prostate cancer cells survive under oxidative stress through modulating MAPK/JNK/ERK pathway.
    Lv C; Fu S; Dong Q; Yu Z; Zhang G; Kong C; Fu C; Zeng Y
    J Exp Clin Cancer Res; 2019 Jan; 38(1):24. PubMed ID: 30658679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sulfiredoxin as a Potential Therapeutic Target for Advanced and Metastatic Prostate Cancer.
    Barquilha CN; Santos NJ; Monção CCD; Barbosa IC; Lima FO; Justulin LA; Pértega-Gomes N; Felisbino SL
    Oxid Med Cell Longev; 2020; 2020():2148562. PubMed ID: 32411320
    [TBL] [Abstract][Full Text] [Related]  

  • 35. miR-188-5p inhibits tumour growth and metastasis in prostate cancer by repressing LAPTM4B expression.
    Zhang H; Qi S; Zhang T; Wang A; Liu R; Guo J; Wang Y; Xu Y
    Oncotarget; 2015 Mar; 6(8):6092-104. PubMed ID: 25714029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. MicroRNA-340 inhibits prostate cancer cell proliferation and metastasis by targeting the MDM2-p53 pathway.
    Huang K; Tang Y; He L; Dai Y
    Oncol Rep; 2016 Feb; 35(2):887-95. PubMed ID: 26718483
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of miR-449a-caused PrLZ overexpression promotes prostate cancer metastasis.
    Chen W; Liu Y; Chen H; Ning H; Ding K
    Int J Oncol; 2017 Aug; 51(2):435-444. PubMed ID: 28627667
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overexpression of SOX18 promotes prostate cancer progression via the regulation of TCF1, c-Myc, cyclin D1 and MMP-7.
    Yin H; Sheng Z; Zhang X; Du Y; Qin C; Liu H; Dun Y; Wang Q; Jin C; Zhao Y; Xu T
    Oncol Rep; 2017 Feb; 37(2):1045-1051. PubMed ID: 27922675
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PHF21B overexpression promotes cancer stem cell-like traits in prostate cancer cells by activating the Wnt/β-catenin signaling pathway.
    Li Q; Ye L; Guo W; Wang M; Huang S; Peng X
    J Exp Clin Cancer Res; 2017 Jun; 36(1):85. PubMed ID: 28645312
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene expression of survivin and its spliced isoforms associated with proliferation and aggressive phenotypes of prostate cancer.
    Koike H; Sekine Y; Kamiya M; Nakazato H; Suzuki K
    Urology; 2008 Dec; 72(6):1229-33. PubMed ID: 18336887
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.