These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 28706230)

  • 21. Near-perfect spectrally-selective metasurface solar absorber based on tungsten octagonal prism array.
    Xu M; Guo L; Zhang P; Qiu Y; Li Q; Wang J
    RSC Adv; 2022 Jun; 12(26):16823-16834. PubMed ID: 35754914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion.
    Lin KT; Lin H; Yang T; Jia B
    Nat Commun; 2020 Mar; 11(1):1389. PubMed ID: 32170054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tailoring photonic metamaterial resonances for thermal radiation.
    Bermel P; Ghebrebrhan M; Harradon M; Yeng YX; Celanovic I; Joannopoulos JD; Soljacic M
    Nanoscale Res Lett; 2011 Oct; 6(1):549. PubMed ID: 21978732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks.
    Sergeant NP; Pincon O; Agrawal M; Peumans P
    Opt Express; 2009 Dec; 17(25):22800-12. PubMed ID: 20052206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A nanophotonic solar thermophotovoltaic device.
    Lenert A; Bierman DM; Nam Y; Chan WR; Celanović I; Soljačić M; Wang EN
    Nat Nanotechnol; 2014 Feb; 9(2):126-30. PubMed ID: 24441985
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Radiative heating and cooling with spectrally selective surfaces.
    Granqvist CG
    Appl Opt; 1981 Aug; 20(15):2606-15. PubMed ID: 20333006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pattern-free solar absorber driven by superposed Fabry-Perot resonances.
    Liu H; Yu K; Zhang K; Ai Q; Xie M; Wu X
    Phys Chem Chem Phys; 2023 Apr; 25(15):10628-10634. PubMed ID: 37000526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Colorful solar selective absorber integrated with different colored units.
    Chen F; Wang SW; Liu X; Ji R; Li Z; Chen X; Chen Y; Lu W
    Opt Express; 2016 Jan; 24(2):A92-103. PubMed ID: 26832602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.
    Zhu L; Raman AP; Fan S
    Proc Natl Acad Sci U S A; 2015 Oct; 112(40):12282-7. PubMed ID: 26392542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multilayer Polypyrrole Nanosheets with Self-Organized Surface Structures for Flexible and Efficient Solar-Thermal Energy Conversion.
    Wang X; Liu Q; Wu S; Xu B; Xu H
    Adv Mater; 2019 May; 31(19):e1807716. PubMed ID: 30920701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit.
    Rephaeli E; Fan S
    Opt Express; 2009 Aug; 17(17):15145-59. PubMed ID: 19687992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Solar energy: the physics of the greenhouse effect.
    Young M
    Appl Opt; 1975 Jul; 14(7):1503-8. PubMed ID: 20154861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tungsten Based Spectrally Selective Absorbers with Anisotropic Rough Surface Texture.
    Pirouzfam N; Sendur K
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443849
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Periodic trapezoidal VO
    Zhang WW; Qi H; Sun AT; Ren YT; Shi JW
    Opt Express; 2020 Jul; 28(14):20609-20623. PubMed ID: 32680117
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanostructured multilayer hyperbolic metamaterials for high efficiency and selective solar absorption.
    Jiang X; Zhou L; Hu J; Wang T
    Opt Express; 2022 Mar; 30(7):11504-11513. PubMed ID: 35473093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Volumetric Absorption Solar Thermal Platforms Employing Thermally Stable - Solar Selective Nanofluids Engineered from Used Engine Oil.
    Singh N; Khullar V
    Sci Rep; 2019 Jul; 9(1):10541. PubMed ID: 31332280
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Metastructure Based on Amorphous Carbon for High Efficiency and Selective Solar Absorption.
    Su J; Chen G; Ma C; Zhang Q; Li X; Geng Y; Jia B; Luo H; Liu D
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A New High-Temperature Durable Absorber Material Solution through a Spinel-Type High Solar Absorptivity Coating on Ti
    Wang W; Ye F; Mu W; Dutta J; Laumert B
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):45008-45017. PubMed ID: 34494820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.
    Lee HJ; Jung DH; Kil TH; Kim SH; Lee KS; Baek SH; Choi WJ; Baik JM
    ACS Appl Mater Interfaces; 2017 May; 9(21):18061-18068. PubMed ID: 28488438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.