These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 28706230)

  • 41. Possible high absorptance and low emittance selective surface for high temperature solar thermal collectors.
    Zhang QC; Kelly JC; Mills DR
    Appl Opt; 1991 May; 30(13):1653-8. PubMed ID: 20700339
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Scalable wavelength-selective solar absorber based on refractory TiN nanostructures.
    Nishikawa K; Yatsugi K
    Nanotechnology; 2021 Apr; 32(15):155404. PubMed ID: 33254161
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Angular solar absorptance of absorbers used in solar thermal collectors.
    Tesfamichael T; Wäckelgård E
    Appl Opt; 1999 Jul; 38(19):4189-97. PubMed ID: 18323901
    [TBL] [Abstract][Full Text] [Related]  

  • 44. All-Day Freshwater Harvesting by Selective Solar Absorption and Radiative Cooling.
    Xi Z; Li S; Yu L; Yan H; Chen M
    ACS Appl Mater Interfaces; 2022 Jun; 14(22):26255-26263. PubMed ID: 35622905
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thermal Stability of Chromium-Iron Oxidation Mixture Cermet-Based Solar Selective Absorbing Coatings.
    Yu H; Li J; Zhang Q; Pang W; Yan H; Li G
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32151026
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Patterned Surfaces for Solar-Driven Interfacial Evaporation.
    Luo Y; Fu B; Shen Q; Hao W; Xu J; Min M; Liu Y; An S; Song C; Tao P; Wu J; Shang W; Deng T
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7584-7590. PubMed ID: 30688056
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A near-ideal solar selective absorber with strong broadband optical absorption from UV to NIR.
    Jiang X; Wang T; Zhong Q; Yan R; Huang X
    Nanotechnology; 2020 Jul; 31(31):315202. PubMed ID: 32289755
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient Warming Textile Enhanced by a High-Entropy Spectrally Selective Nanofilm with High Solar Absorption.
    He CY; Zhao P; Zhang H; Chen K; Liu BH; Lu ZW; Li Y; La PQ; Liu G; Gao XH
    Adv Sci (Weinh); 2023 Jan; 10(3):e2204817. PubMed ID: 36446628
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Spectral selectivity of high-temperature solar absorbers.
    Trotter DM; Sievers AJ
    Appl Opt; 1980 Mar; 19(5):711-28. PubMed ID: 20220922
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A Feasible and Promising Strategy for Improving the Solar Selectivity and Thermal Stability of Cermet-Based Photothermal Conversion Coatings.
    Wang X; Kang Y; Yuan X; Gong D; Li K
    Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234192
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Highly Enhanced Thermal Robustness and Photothermal Conversion Efficiency of Solar-Selective Absorbers Enabled by High-Entropy Alloy Nitride MoTaTiCrN Nanofilms.
    He CY; Gao XH; Yu DM; Guo HX; Zhao SS; Liu G
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16987-16996. PubMed ID: 33787205
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultra-wideband and wide-angle perfect solar energy absorber based on Ti nanorings surface plasmon resonance.
    Zhou F; Qin F; Yi Z; Yao W; Liu Z; Wu X; Wu P
    Phys Chem Chem Phys; 2021 Aug; 23(31):17041-17048. PubMed ID: 34342321
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Performance study of a laboratory model shallow solar pond with and without single transparent glass cover for solar thermal energy conversion applications.
    Ganesh S; Arumugam S
    Ecotoxicol Environ Saf; 2016 Dec; 134(Pt 2):462-466. PubMed ID: 27036625
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transparent heat mirrors for solar-energy applications.
    Fan JC; Bachner FJ
    Appl Opt; 1976 Apr; 15(4):1012-7. PubMed ID: 20165111
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Metasurface Broadband Solar Absorber.
    Azad AK; Kort-Kamp WJ; Sykora M; Weisse-Bernstein NR; Luk TS; Taylor AJ; Dalvit DA; Chen HT
    Sci Rep; 2016 Feb; 6():20347. PubMed ID: 26828999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.
    Tagliabue G; Eghlidi H; Poulikakos D
    Sci Rep; 2014 Nov; 4():7181. PubMed ID: 25418040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Development of Carbon-Nanotube-Based Solar Heat Absorption Devices and Their Application.
    Islam S; Furuta H
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364647
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Plasmon-Enhanced Greenhouse Selectivity for High-Temperature Solar Thermal Energy Conversion.
    Berquist ZJ; Turaczy KK; Lenert A
    ACS Nano; 2020 Oct; 14(10):12605-12613. PubMed ID: 32856897
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Infrared spectral emittance profiles of spectrally selective solar absorbing layers at elevated temperatures.
    Soule DE; Smith DW
    Appl Opt; 1977 Nov; 16(11):2818-21. PubMed ID: 20174248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.