These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 28706560)

  • 1. Experimental realization and characterization of an electronic Lieb lattice.
    Slot MR; Gardenier TS; Jacobse PH; van Miert GCP; Kempkes SN; Zevenhuizen SJM; Smith CM; Vanmaekelbergh D; Swart I
    Nat Phys; 2017 Jul; 13(7):672-676. PubMed ID: 28706560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p Orbital Flat Band and Dirac Cone in the Electronic Honeycomb Lattice.
    Gardenier TS; van den Broeke JJ; Moes JR; Swart I; Delerue C; Slot MR; Smith CM; Vanmaekelbergh D
    ACS Nano; 2020 Oct; 14(10):13638-13644. PubMed ID: 32991147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realization of Lieb lattice in covalent-organic frameworks with tunable topology and magnetism.
    Cui B; Zheng X; Wang J; Liu D; Xie S; Huang B
    Nat Commun; 2020 Jan; 11(1):66. PubMed ID: 31898693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exotic Topological Bands and Quantum States in Metal-Organic and Covalent-Organic Frameworks.
    Jiang W; Ni X; Liu F
    Acc Chem Res; 2021 Jan; 54(2):416-426. PubMed ID: 33400497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Realization of Two-Dimensional Buckled Lieb Lattice.
    Feng H; Liu C; Zhou S; Gao N; Gao Q; Zhuang J; Xu X; Hu Z; Wang J; Chen L; Zhao J; Dou SX; Du Y
    Nano Lett; 2020 Apr; 20(4):2537-2543. PubMed ID: 32182079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Lieb-like lattice in a covalent-organic framework and its Stoner ferromagnetism.
    Jiang W; Huang H; Liu F
    Nat Commun; 2019 May; 10(1):2207. PubMed ID: 31101812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic Quantum Materials Simulated with Artificial Model Lattices.
    Freeney SE; Slot MR; Gardenier TS; Swart I; Vanmaekelbergh D
    ACS Nanosci Au; 2022 Jun; 2(3):198-224. PubMed ID: 35726276
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ag
    Yang T; Luo YZ; Wang Z; Zhu T; Pan H; Wang S; Lau SP; Feng YP; Yang M
    Nanoscale; 2021 Sep; 13(33):14008-14015. PubMed ID: 34477681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A first theoretical realization of honeycomb topological magnon insulator.
    Owerre SA
    J Phys Condens Matter; 2016 Sep; 28(38):386001. PubMed ID: 27437569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental realization of a reconfigurable Lieb photonic lattice in a coherent atomic medium.
    Liang S; Liu Z; Ning S; Zhang Y; Zhang Z
    Opt Lett; 2023 Feb; 48(3):803-806. PubMed ID: 36723593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Observation of a Localized Flat-Band State in a Photonic Lieb Lattice.
    Mukherjee S; Spracklen A; Choudhury D; Goldman N; Öhberg P; Andersson E; Thomson RR
    Phys Rev Lett; 2015 Jun; 114(24):245504. PubMed ID: 26196987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topological Band Engineering of Lieb Lattice in Phthalocyanine-Based Metal-Organic Frameworks.
    Jiang W; Zhang S; Wang Z; Liu F; Low T
    Nano Lett; 2020 Mar; 20(3):1959-1966. PubMed ID: 32078326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Dimensional Kagome Lattices Made of Hetero Triangulenes Are Dirac Semimetals or Single-Band Semiconductors.
    Jing Y; Heine T
    J Am Chem Soc; 2019 Jan; 141(2):743-747. PubMed ID: 30499300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic Janus lattice and kagome-like bands in coloring-triangular MoTe
    Lei L; Dai J; Dong H; Geng Y; Cao F; Wang C; Xu R; Pang F; Liu ZX; Li F; Cheng Z; Wang G; Ji W
    Nat Commun; 2023 Oct; 14(1):6320. PubMed ID: 37813844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous plasmons in a two-dimensional Dirac nodal-line Lieb lattice.
    Ding C; Gao H; Geng W; Zhao M
    Nanoscale Adv; 2021 Feb; 3(4):1127-1135. PubMed ID: 36133292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing artificial two dimensional electron lattice on metal surface: a Kagome-like lattice as an example.
    Li S; Qiu WX; Gao JH
    Nanoscale; 2016 Jul; 8(25):12747-54. PubMed ID: 27279292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observation of gapped Dirac cones in a two-dimensional Su-Schrieffer-Heeger lattice.
    Geng D; Zhou H; Yue S; Sun Z; Cheng P; Chen L; Meng S; Wu K; Feng B
    Nat Commun; 2022 Nov; 13(1):7000. PubMed ID: 36385244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designer artificial chiral kagome lattice with tunable flat bands and topological boundary states.
    Li X; Wang D; Hu H; Pan Y
    Nanotechnology; 2024 Jan; 35(14):. PubMed ID: 38081065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling double flat bands in a quadrangular-star lattice.
    Jiang J; Jiang W; Zhang S; Xie Y; Chen Y
    Nanoscale; 2023 May; 15(19):8825-8831. PubMed ID: 37114430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons.
    Jacqmin T; Carusotto I; Sagnes I; Abbarchi M; Solnyshkov DD; Malpuech G; Galopin E; Lemaître A; Bloch J; Amo A
    Phys Rev Lett; 2014 Mar; 112(11):116402. PubMed ID: 24702392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.