These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 28706663)

  • 21. Control of single-electron charging of metallic nanoparticles onto amorphous silicon surface.
    Weis M; Gmucová K; Nádazdy V; Capek I; Satka A; Kopáni M; Cirák J; Majková E
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5684-9. PubMed ID: 19198289
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fermi surface nesting and nanoscale fluctuating charge/orbital ordering in colossal magnetoresistive oxides.
    Chuang YD; Gromko AD; Dessau DS; Kimura T; Tokura Y
    Science; 2001 May; 292(5521):1509-13. PubMed ID: 11326084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemical routes to discharging graphenides.
    Hodge SA; Buckley DJ; Yau HC; Skipper NT; Howard CA; Shaffer MSP
    Nanoscale; 2017 Mar; 9(9):3150-3158. PubMed ID: 28220176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Critical evaluation of dipolar, acid-base and charge interactions II. Charge exchange within electrolytes and electron exchange with semiconductors.
    Rosenholm JB
    Adv Colloid Interface Sci; 2017 Sep; 247():305-353. PubMed ID: 28847408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Redox Potentials of Colloidal n-Type ZnO Nanocrystals: Effects of Confinement, Electron Density, and Fermi-Level Pinning by Aldehyde Hydrogenation.
    Carroll GM; Schimpf AM; Tsui EY; Gamelin DR
    J Am Chem Soc; 2015 Sep; 137(34):11163-9. PubMed ID: 26263400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronic doping and redox-potential tuning in colloidal semiconductor nanocrystals.
    Schimpf AM; Knowles KE; Carroll GM; Gamelin DR
    Acc Chem Res; 2015 Jul; 48(7):1929-37. PubMed ID: 26121552
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Explaining electrostatic charging and flow of surface-modified acetaminophen powders as a function of relative humidity through surface energetics.
    Jallo LJ; Dave RN
    J Pharm Sci; 2015 Jul; 104(7):2225-32. PubMed ID: 25974039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface Chemistry Controls the Density of States in Metallic Nanoparticles.
    Litak NP; Mawby LM; Lear BJ
    ACS Nano; 2022 Mar; 16(3):4479-4486. PubMed ID: 35274922
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On the influence of environment gases, relative humidity and gas purification on dielectric charging/discharging processes in electrostatically driven MEMS/NEMS devices.
    Zaghloul U; Bhushan B; Pons P; Papaioannou GJ; Coccetti F; Plana R
    Nanotechnology; 2011 Jan; 22(3):035705. PubMed ID: 21149964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Charging mechanisms of trapped element-selectively excited nanoparticles exposed to soft x rays.
    Grimm M; Langer B; Schlemmer S; Lischke T; Becker U; Widdra W; Gerlich D; Flesch R; Rühl E
    Phys Rev Lett; 2006 Feb; 96(6):066801. PubMed ID: 16606027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fermi level density of states modulation without charge transfer in nickelate superlattices.
    Han MJ; van Veenendaal M
    J Phys Condens Matter; 2014 Apr; 26(14):145501. PubMed ID: 24637347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Discrete electrostatic charge transfer by the electrophoresis of a charged droplet in a dielectric liquid.
    Im DJ; Ahn MM; Yoo BS; Moon D; Lee DW; Kang IS
    Langmuir; 2012 Aug; 28(32):11656-61. PubMed ID: 22846106
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrostatic interactions between ions near Thomas-Fermi substrates and the surface energy of ionic crystals at imperfect metals.
    Kaiser V; Comtet J; Niguès A; Siria A; Coasne B; Bocquet L
    Faraday Discuss; 2017 Jul; 199():129-158. PubMed ID: 28436506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On Modeling of Plasmon-Induced Enhancement of the Efficiency of Solar Cells Modified by Metallic Nano-Particles.
    Kluczyk K; David C; Jacak J; Jacak W
    Nanomaterials (Basel); 2018 Dec; 9(1):. PubMed ID: 30577518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fermi Level Equilibration at the Metal-Molecule Interface in Plasmonic Systems.
    Stefancu A; Lee S; Zhu L; Liu M; Lucacel RC; Cortés E; Leopold N
    Nano Lett; 2021 Aug; 21(15):6592-6599. PubMed ID: 34291936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seeing the Fermi surface in real space by nanoscale electron focusing.
    Weismann A; Wenderoth M; Lounis S; Zahn P; Quaas N; Ulbrich RG; Dederichs PH; Blügel S
    Science; 2009 Feb; 323(5918):1190-3. PubMed ID: 19251623
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reversible electrochemical actuation of metallic nanohoneycombs induced by pseudocapacitive redox processes.
    Cheng C; Ngan AH
    ACS Nano; 2015 Apr; 9(4):3984-95. PubMed ID: 25758028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Half metallic ferromagnets.
    Dowben P
    J Phys Condens Matter; 2007 Aug; 19(31):310301. PubMed ID: 21694101
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Charge-selective Raman scattering and fluorescence quenching by "nanometal on semiconductor" substrates.
    Bhatt K; Tan S; Karumuri S; Kalkan AK
    Nano Lett; 2010 Oct; 10(10):3880-7. PubMed ID: 20812671
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoinduced electron storage and surface plasmon modulation in Ag@TiO2 clusters.
    Hirakawa T; Kamat PV
    Langmuir; 2004 Jul; 20(14):5645-7. PubMed ID: 16459570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.