These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28706674)

  • 41. Porous palladium-poly(3,4-ethylenedioxythiophene)-coated carbon microspheres/graphene nanoplatelet-modified electrode for flow-based-amperometric hydrazine sensor.
    Promsuwan K; Thongtawat J; Limbut W
    Mikrochim Acta; 2020 Sep; 187(9):539. PubMed ID: 32876787
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wave Propagation in Rotating Functionally Graded Microbeams Reinforced by Graphene Nanoplatelets.
    Zhao T; Ma Y; Zhou J; Fu Y
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500585
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Preparation of graphite nanoplatelets and graphene sheets.
    Geng Y; Wang SJ; Kim JK
    J Colloid Interface Sci; 2009 Aug; 336(2):592-8. PubMed ID: 19414181
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dioctyl Phthalate-Modified Graphene Nanoplatelets: An Effective Additive for Enhanced Mechanical Properties of Natural Rubber.
    Duy LNP; Bui C; Nguyen LT; Nguyen TH; Tung NT; La DD
    Polymers (Basel); 2022 Jun; 14(13):. PubMed ID: 35808586
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development.
    Gupta S; Smith T; Banaszak A; Boeckl J
    Nanomaterials (Basel); 2017 Sep; 7(10):. PubMed ID: 28961225
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact electrochemistry reveals that graphene nanoplatelets catalyse the oxidation of dopamine
    Chen L; Tanner EEL; Lin C; Compton RG
    Chem Sci; 2018 Jan; 9(1):152-159. PubMed ID: 29629083
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of Graphene Nanoplatelet Lateral Size on the Electrical Conductivity and Electromagnetic Interference Shielding Performance of Polyester Nanocomposites.
    Madinehei M; Kuester S; Kaydanova T; Moghimian N; David É
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372170
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Unravelling the last milliseconds of an individual graphene nanoplatelet before impact with a Pt surface by bipolar electrochemistry.
    Deng Z; Renault C
    Chem Sci; 2021 Sep; 12(37):12494-12500. PubMed ID: 34603681
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermally-Conductive and Mechanically-Robust Graphene Nanoplatelet Reinforced UO
    Yao T; Xin G; Scott SM; Gong B; Lian J
    Sci Rep; 2018 Feb; 8(1):2987. PubMed ID: 29445176
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Computational Modeling of Hybrid Carbon Fiber/Epoxy Composites Reinforced with Functionalized and Non-Functionalized Graphene Nanoplatelets.
    Al Mahmud H; Radue MS; Pisani WA; Odegard GM
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835683
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Deposition of Multiscale Thickness Graphene Coating by Harnessing Extreme Heat and Rapid Quenching: Toward Commercialization.
    Mukherjee B; Rahman OSA; Islam A; Pandey KK; Keshri AK
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):25500-25507. PubMed ID: 31268660
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Graphene nanoplatelet supported CeO
    Li C; Zhang Y; Zeng T; Chen X; Wang W; Wan Q; Yang N
    Anal Chim Acta; 2019 Dec; 1088():45-53. PubMed ID: 31623715
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Graphene nanoplatelets: electrochemical properties and applications for oxidation of endocrine-disrupting chemicals.
    Wan Q; Cai H; Liu Y; Song H; Liao H; Liu S; Yang N
    Chemistry; 2013 Mar; 19(10):3483-9. PubMed ID: 23345255
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Efficient oxygen reduction electrocatalyst based on edge-nitrogen-rich graphene nanoplatelets: toward a large-scale synthesis.
    Fu X; Jin J; Liu Y; Wei Z; Pan F; Zhang J
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):3930-6. PubMed ID: 24598249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films.
    Jimenez MJM; Oliveira RF; Almeida TP; Ferreira RCH; Bufon CCB; Rodrigues V; Pereira-da-Silva MA; Gobbi ÂL; Piazzetta MHO; Riul A
    Nanotechnology; 2017 Dec; 28(49):495711. PubMed ID: 28985189
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A new micromechanical approach for the preparation of graphene nanoplatelets deposited on polyethylene.
    Coscia U; Palomba M; Ambrosone G; Barucca G; Cabibbo M; Mengucci P; de Asmundis R; Carotenuto G
    Nanotechnology; 2017 May; 28(19):194001. PubMed ID: 28301333
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Graphene-based nanoplatelets: a new risk to the respiratory system as a consequence of their unusual aerodynamic properties.
    Schinwald A; Murphy FA; Jones A; MacNee W; Donaldson K
    ACS Nano; 2012 Jan; 6(1):736-46. PubMed ID: 22195731
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of Electrical Heating Textile Coated by Graphene Nanoplatelets/PVDF-HFP Composite with Various High Graphene Nanoplatelet Contents.
    Kim H; Lee S
    Polymers (Basel); 2019 May; 11(5):. PubMed ID: 31137888
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microstructural Properties of Cement Paste and Mortar Modified by Low Cost Nanoplatelets Sourced from Natural Materials.
    Huang P; Lv L; Liao W; Lu C; Xu Z
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751666
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Empirical potential for molecular simulation of graphene nanoplatelets.
    Bourque AJ; Rutledge GC
    J Chem Phys; 2018 Apr; 148(14):144709. PubMed ID: 29655320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.