These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 28707422)

  • 1. Description of D-glucosamine immobilization kinetics onto poly(lactic acid) surface via a multistep physicochemical approach for preparation of novel active biomaterials.
    Swilem AE; Lehocký M; Humpolíček P; Kucekova Z; Novák I; Mičušík M; Abd El-Rehim HA; Hegazy EA; Hamed AA; Kousal J
    J Biomed Mater Res A; 2017 Nov; 105(11):3176-3188. PubMed ID: 28707422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing a biomaterial interface based on poly(lactic acid) via plasma-assisted covalent anchorage of d-glucosamine and its potential for tissue regeneration.
    Swilem AE; Lehocký M; Humpolíček P; Kucekova Z; Junkar I; Mozetič M; Hamed AA; Novák I
    Colloids Surf B Biointerfaces; 2016 Dec; 148():59-65. PubMed ID: 27591571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The surface grafting of graphene oxide with poly(ethylene glycol) as a reinforcement for poly(lactic acid) nanocomposite scaffolds for potential tissue engineering applications.
    Zhang C; Wang L; Zhai T; Wang X; Dan Y; Turng LS
    J Mech Behav Biomed Mater; 2016 Jan; 53():403-413. PubMed ID: 26409231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibronectin immobilization using water-soluble carbodiimide on poly-L-lactic acid for enhancing initial fibroblast attachment.
    Nagai M; Hayakawa T; Makimura M; Yoshinari M
    J Biomater Appl; 2006 Jul; 21(1):33-47. PubMed ID: 16443618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of aqueous solubility of grafted moiety on the physicochemical properties of poly(d,l-lactide) (PLA) based nanoparticles.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2010 Mar; 388(1-2):263-73. PubMed ID: 20060450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of diameter of fiber membrane scaffolds on the biocompatibility of hPDL mesenchymal stromal cells.
    Suarez-Franco JL; Vázquez-Vázquez FC; Pozos-Guillen A; Montesinos JJ; Alvarez-Fregoso O; Alvarez-Perez MA
    Dent Mater J; 2018 Jun; 37(3):465-473. PubMed ID: 29553121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface modification of copolymerized films from three-armed biodegradable macromers - An analytical platform for modified tissue engineering scaffolds.
    Müller BM; Loth R; Hoffmeister PG; Zühl F; Kalbitzer L; Hacker MC; Schulz-Siegmund M
    Acta Biomater; 2017 Mar; 51():148-160. PubMed ID: 28069495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.
    Abdal-Hay A; Hussein KH; Casettari L; Khalil KA; Hamdy AS
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():143-150. PubMed ID: 26706517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.
    Zhu L; Liu F; Yu X; Xue L
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):17748-55. PubMed ID: 26222398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing growth and proliferation of human gingival fibroblasts on chitosan grafted poly (epsilon-caprolactone) films is influenced by nano-roughness chitosan surfaces.
    Chung TW; Wang SS; Wang YZ; Hsieh CH; Fu E
    J Mater Sci Mater Med; 2009 Jan; 20(1):397-404. PubMed ID: 18815730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailored Chemical Properties of 4-Arm Star Shaped Poly(d,l-lactide) as Cell Adhesive Three-Dimensional Scaffolds.
    Balavigneswaran CK; Mahto SK; Subia B; Prabhakar A; Mitra K; Rao V; Ganguli M; Ray B; Maiti P; Misra N
    Bioconjug Chem; 2017 Apr; 28(4):1236-1250. PubMed ID: 28345891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and optimization of biocompatible polycaprolactone/poly (l-lactic-co-glycolic acid) scaffolds with and without microgrooves for tissue engineering applications.
    Alvim Valente C; Cesar Chagastelles P; Fontana Nicoletti N; Ramos Garcez G; Sgarioni B; Herrmann F; Pesenatto G; Goldani E; Zanini ML; Campos MM; Meurer Papaléo R; Braga da Silva J; de Souza Basso NR
    J Biomed Mater Res A; 2018 Jun; 106(6):1522-1534. PubMed ID: 29388321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial Activity and Cytotoxicity of Immobilized Glucosamine/Chondroitin Sulfate on Polylactic Acid Films.
    Karakurt I; Ozaltin K; Vesela D; Lehocky M; Humpolíček P; Mozetič M
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31311162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyelectrolyte multi-layers assembly of SiCHA nanopowders and collagen type I on aminolysed PLA films to enhance cell-material interactions.
    Baba Ismail YM; Ferreira AM; Bretcanu O; Dalgarno K; El Haj AJ
    Colloids Surf B Biointerfaces; 2017 Nov; 159():445-453. PubMed ID: 28837894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photo-initiated grafting of gelatin/N-maleic acyl-chitosan to enhance endothelial cell adhesion, proliferation and function on PLA surface.
    Zhu A; Zhao F; Ma T
    Acta Biomater; 2009 Jul; 5(6):2033-44. PubMed ID: 19299215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new approach for the immobilization of poly(acrylic) acid as a chemically reactive cross-linker on the surface of poly(lactic) acid-based biomaterials.
    Stankevich KS; Danilenko NV; Gadirov RM; Goreninskii SI; Tverdokhlebov SI; Filimonov VD
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():862-869. PubMed ID: 27987783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of polymer architecture on surface properties, plasma protein adsorption, and cellular interactions of pegylated nanoparticles.
    Sant S; Poulin S; Hildgen P
    J Biomed Mater Res A; 2008 Dec; 87(4):885-95. PubMed ID: 18228249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Solvent/non-solvent" treatment as a method for non-covalent immobilization of gelatin on the surface of poly(l-lactic acid) electrospun scaffolds.
    Goreninskii SI; Guliaev RO; Stankevich KS; Danilenko NV; Bolbasov EN; Golovkin AS; Mishanin AI; Filimonov VD; Tverdokhlebov SI
    Colloids Surf B Biointerfaces; 2019 May; 177():137-140. PubMed ID: 30721789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-plasma grafting of AEMA as a versatile tool to biofunctionalise polyesters for tissue engineering.
    Desmet T; Billiet T; Berneel E; Cornelissen R; Schaubroeck D; Schacht E; Dubruel P
    Macromol Biosci; 2010 Dec; 10(12):1484-94. PubMed ID: 20857390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.