These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1165 related articles for article (PubMed ID: 28707508)
1. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. Raeisdasteh Hokmabad V; Davaran S; Ramazani A; Salehi R J Biomater Sci Polym Ed; 2017 Nov; 28(16):1797-1825. PubMed ID: 28707508 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of highly porous tissue-engineering scaffolds using selective spherical porogens. Johnson T; Bahrampourian R; Patel A; Mequanint K Biomed Mater Eng; 2010; 20(2):107-18. PubMed ID: 20592448 [TBL] [Abstract][Full Text] [Related]
3. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Duan B; Cheung WL; Wang M Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522 [TBL] [Abstract][Full Text] [Related]
4. A review: fabrication of porous polyurethane scaffolds. Janik H; Marzec M Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():586-91. PubMed ID: 25579961 [TBL] [Abstract][Full Text] [Related]
5. Applications of 3D printed bone tissue engineering scaffolds in the stem cell field. Su X; Wang T; Guo S Regen Ther; 2021 Mar; 16():63-72. PubMed ID: 33598507 [TBL] [Abstract][Full Text] [Related]
6. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients. Trachtenberg JE; Placone JK; Smith BT; Fisher JP; Mikos AG J Biomater Sci Polym Ed; 2017 Apr; 28(6):532-554. PubMed ID: 28125380 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering. Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976 [TBL] [Abstract][Full Text] [Related]
8. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
9. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds. Sempertegui ND; Narkhede AA; Thomas V; Rao SS J Biomater Sci Polym Ed; 2018 Nov; 29(16):1978-1993. PubMed ID: 30220215 [TBL] [Abstract][Full Text] [Related]
10. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z Int J Biol Macromol; 2014 Aug; 69():464-70. PubMed ID: 24933519 [TBL] [Abstract][Full Text] [Related]
12. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Sultana N; Wang M Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057 [TBL] [Abstract][Full Text] [Related]
13. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold. Wu L; Zhang H; Zhang J; Ding J Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446 [TBL] [Abstract][Full Text] [Related]
14. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Kim SS; Sun Park M; Jeon O; Yong Choi C; Kim BS Biomaterials; 2006 Mar; 27(8):1399-409. PubMed ID: 16169074 [TBL] [Abstract][Full Text] [Related]
15. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642 [TBL] [Abstract][Full Text] [Related]
16. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Grottkau BE; Hui Z; Yao Y; Pang Y Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530 [TBL] [Abstract][Full Text] [Related]
17. [Surface modification of biodegradable polymer/TCP scaffolds and related research]. Ma X; Hu Y; Wu X; Yan Y; Xiong Z; Lu R; Wang J; Li D; Xu X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Jun; 25(3):571-7. PubMed ID: 18693433 [TBL] [Abstract][Full Text] [Related]
18. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique. Nahanmoghadam A; Asemani M; Goodarzi V; Ebrahimi-Barough S J Biomed Mater Res A; 2021 Jun; 109(6):981-993. PubMed ID: 33448637 [TBL] [Abstract][Full Text] [Related]
19. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Tan KH; Chua CK; Leong KF; Cheah CM; Gui WS; Tan WS; Wiria FE Biomed Mater Eng; 2005; 15(1-2):113-24. PubMed ID: 15623935 [TBL] [Abstract][Full Text] [Related]
20. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]