BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28707559)

  • 1. Viscoelastic properties of mitral valve leaflets: An analysis of regional variation and frequency-dependency.
    Baxter J; Buchan KG; Espino DM
    Proc Inst Mech Eng H; 2017 Oct; 231(10):938-944. PubMed ID: 28707559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency and diameter dependent viscoelastic properties of mitral valve chordae tendineae.
    Wilcox AG; Buchan KG; Espino DM
    J Mech Behav Biomed Mater; 2014 Feb; 30():186-95. PubMed ID: 24316874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical comparison of porcine mitral leaflets with porcine small intestinal submucosa extracellular matrix.
    Islamagič L; Tjørnild MJ; Carlson Hanse L; Nygaard JV; Hasenkam JM
    Proc Inst Mech Eng H; 2023 Apr; 237(4):435-442. PubMed ID: 36882979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects on cordal and leaflet stiffness of severe apical, posterior, and outward papillary displacement in advanced ventricular mechanism heart failure and mitral insufficiency.
    Frater RW
    J Heart Valve Dis; 2011 Nov; 20(6):608-18. PubMed ID: 22655489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency dependent viscoelastic properties of porcine bladder.
    Barnes SC; Shepherd DE; Espino DM; Bryan RT
    J Mech Behav Biomed Mater; 2015 Feb; 42():168-76. PubMed ID: 25486629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material properties of aged human mitral valve leaflets.
    Pham T; Sun W
    J Biomed Mater Res A; 2014 Aug; 102(8):2692-703. PubMed ID: 24039052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping the spatial variation of mitral valve elastic properties using air-pulse optical coherence elastography.
    Vekilov DP; Singh M; Aglyamov SR; Larin KV; Grande-Allen KJ
    J Biomech; 2019 Aug; 93():52-59. PubMed ID: 31300156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonhomogeneous deformation in the anterior leaflet of the mitral valve.
    Chen L; McCulloch AD; May-Newman K
    Ann Biomed Eng; 2004 Dec; 32(12):1599-606. PubMed ID: 15675673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biaxial mechanical behavior of excised porcine mitral valve leaflets.
    May-Newman K; Yin FC
    Am J Physiol; 1995 Oct; 269(4 Pt 2):H1319-27. PubMed ID: 7485564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low frequency dynamic viscoelastic properties of human mitral valve tissue.
    Lim KO; Boughner DR
    Cardiovasc Res; 1976 Jul; 10(4):459-65. PubMed ID: 985687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ex vivo experimental characterizations for understanding the interrelationship between tissue mechanics and collagen microstructure of porcine mitral valve leaflets.
    Fitzpatrick DJ; Pham K; Ross CJ; Hudson LT; Laurence DW; Yu Y; Lee CH
    J Mech Behav Biomed Mater; 2022 Oct; 134():105401. PubMed ID: 35944442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glutaraldehyde based cross-linking on the viscoelasticity of mitral valve basal chordae tendineae.
    Constable M; Burton HE; Lawless BM; Gramigna V; Buchan KG; Espino DM
    Biomed Eng Online; 2018 Jul; 17(1):93. PubMed ID: 30001710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of myxomatous mitral valves.
    Barber JE; Kasper FK; Ratliff NB; Cosgrove DM; Griffin BP; Vesely I
    J Thorac Cardiovasc Surg; 2001 Nov; 122(5):955-62. PubMed ID: 11689801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical testing of glutaraldehyde cross-linked mitral valves. Part two: Elastic and viscoelastic properties of chordae tendineae.
    Constable M; Northeast R; Lawless BM; Burton HE; Gramigna V; Goh KL; Buchan KG; Espino DM
    Proc Inst Mech Eng H; 2021 Mar; 235(3):291-299. PubMed ID: 33243079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biaxial mechanical behavior of bovine saphenous venous valve leaflets.
    Lu J; Huang HS
    J Mech Behav Biomed Mater; 2018 Jan; 77():594-599. PubMed ID: 29096125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification and comparison of the mechanical properties of four human cardiac valves.
    Pham T; Sulejmani F; Shin E; Wang D; Sun W
    Acta Biomater; 2017 May; 54():345-355. PubMed ID: 28336153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro dynamic strain behavior of the mitral valve posterior leaflet.
    He Z; Ritchie J; Grashow JS; Sacks MS; Yoganathan AP
    J Biomech Eng; 2005 Jun; 127(3):504-11. PubMed ID: 16060357
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential collagen distribution in the mitral valve and its influence on biomechanical behaviour.
    Kunzelman KS; Cochran RP; Murphree SS; Ring WS; Verrier ED; Eberhart RC
    J Heart Valve Dis; 1993 Mar; 2(2):236-44. PubMed ID: 8261162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glutaraldehyde-stabilized porcine aortic valve xenograft. II. Effect of fixation with or without pressure on the tensile viscoelastic properties of the leaflet material.
    Lee JM; Boughner DR; Courtman DW
    J Biomed Mater Res; 1984 Jan; 18(1):79-98. PubMed ID: 6421823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.