These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 28707912)

  • 1. Chiral Spin Liquid on a Kagome Antiferromagnet Induced by the Dzyaloshinskii-Moriya Interaction.
    Messio L; Bieri S; Lhuillier C; Bernu B
    Phys Rev Lett; 2017 Jun; 118(26):267201. PubMed ID: 28707912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kagome antiferromagnet: a chiral topological spin liquid?
    Messio L; Bernu B; Lhuillier C
    Phys Rev Lett; 2012 May; 108(20):207204. PubMed ID: 23003183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field-induced freezing of a quantum spin liquid on the kagome lattice.
    Jeong M; Bert F; Mendels P; Duc F; Trombe JC; de Vries MA; Harrison A
    Phys Rev Lett; 2011 Dec; 107(23):237201. PubMed ID: 22182120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying spinon excitations from dynamic structure factor of spin-1/2 Heisenberg antiferromagnet on the Kagome lattice.
    Zhu W; Gong SS; Sheng DN
    Proc Natl Acad Sci U S A; 2019 Mar; 116(12):5437-5441. PubMed ID: 30833409
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Mondal K; Kadolkar C
    J Phys Condens Matter; 2021 Feb; 33(14):. PubMed ID: 33455949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective field theory of chiral spin liquid between ordered phases in a kagome antiferromagnet.
    Makhfudz I
    J Phys Condens Matter; 2018 Jun; 30(22):225801. PubMed ID: 29651993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin Thermal Hall Conductivity of a Kagome Antiferromagnet.
    Doki H; Akazawa M; Lee HY; Han JH; Sugii K; Shimozawa M; Kawashima N; Oda M; Yoshida H; Yamashita M
    Phys Rev Lett; 2018 Aug; 121(9):097203. PubMed ID: 30230896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin waves in the frustrated kagomé lattice antiferromagnet KFe3(OH)6(SO4)2.
    Matan K; Grohol D; Nocera DG; Yildirim T; Harris AB; Lee SH; Nagler SE; Lee YS
    Phys Rev Lett; 2006 Jun; 96(24):247201. PubMed ID: 16907274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of Magnetic Ordering in a Structurally Perfect Quantum Kagome Antiferromagnet.
    Arh T; Gomilšek M; Prelovšek P; Pregelj M; Klanjšek M; Ozarowski A; Clark SJ; Lancaster T; Sun W; Mi JX; Zorko A
    Phys Rev Lett; 2020 Jul; 125(2):027203. PubMed ID: 32701346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal chemistry criteria of the existence of spin liquids on the kagome lattice.
    Volkova LM; Marinin DV
    J Phys Condens Matter; 2021 Aug; 33(41):. PubMed ID: 34261046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet.
    Fu M; Imai T; Han TH; Lee YS
    Science; 2015 Nov; 350(6261):655-8. PubMed ID: 26542565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kagome map of spin liquids from XXZ to Dzyaloshinskii-Moriya ferromagnet.
    Essafi K; Benton O; Jaubert LD
    Nat Commun; 2016 Jan; 7():10297. PubMed ID: 26796866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnon Hall effect without Dzyaloshinskii-Moriya interaction.
    Owerre SA
    J Phys Condens Matter; 2017 Jan; 29(3):03LT01. PubMed ID: 27845921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Net Dzyaloshinskii-Moriya interaction in defect-enriched ferromagnet.
    Quan Y; Steiner J; Li B; Song Y; Kohlbrecher J; Hautle P
    J Phys Condens Matter; 2023 Jun; 35(38):. PubMed ID: 37267996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-wave spectrum of the quantum ferromagnet on the pyrochlore lattice Lu2V2O7.
    Mena M; Perry RS; Perring TG; Le MD; Guerrero S; Storni M; Adroja DT; Rüegg Ch; McMorrow DF
    Phys Rev Lett; 2014 Jul; 113(4):047202. PubMed ID: 25105649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dzyaloshinskii-Moriya Interaction across an Antiferromagnet-Ferromagnet Interface.
    Ma X; Yu G; Razavi SA; Sasaki SS; Li X; Hao K; Tolbert SH; Wang KL; Li X
    Phys Rev Lett; 2017 Jul; 119(2):027202. PubMed ID: 28753324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kapellasite: a kagome quantum spin liquid with competing interactions.
    Fåk B; Kermarrec E; Messio L; Bernu B; Lhuillier C; Bert F; Mendels P; Koteswararao B; Bouquet F; Ollivier J; Hillier AD; Amato A; Colman RH; Wills AS
    Phys Rev Lett; 2012 Jul; 109(3):037208. PubMed ID: 22861895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal-transport studies of kagomé antiferromagnets.
    Yamashita M; Akazawa M; Shimozawa M; Shibauchi T; Matsuda Y; Ishikawa H; Yajima T; Hiroi Z; Oda M; Yoshida H; Lee HY; Han JH; Kawashima N
    J Phys Condens Matter; 2020 Feb; 32(7):074001. PubMed ID: 31648207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-Free Spin-Orbit Torque Switching Enabled by the Interlayer Dzyaloshinskii-Moriya Interaction.
    He W; Wan C; Zheng C; Wang Y; Wang X; Ma T; Wang Y; Guo C; Luo X; Stebliy ME; Yu G; Liu Y; Ognev AV; Samardak AS; Han X
    Nano Lett; 2022 Sep; 22(17):6857-6865. PubMed ID: 35849087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct spin liquids and their transitions in spin-1/2 XXZ kagome antiferromagnets.
    He YC; Chen Y
    Phys Rev Lett; 2015 Jan; 114(3):037201. PubMed ID: 25659017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.