These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 28707944)

  • 1. Scaling Universality between Band Gap and Exciton Binding Energy of Two-Dimensional Semiconductors.
    Jiang Z; Liu Z; Li Y; Duan W
    Phys Rev Lett; 2017 Jun; 118(26):266401. PubMed ID: 28707944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials.
    Choi JH; Cui P; Lan H; Zhang Z
    Phys Rev Lett; 2015 Aug; 115(6):066403. PubMed ID: 26296125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strongly Bound Excitons and Anisotropic Linear Absorption in Monolayer Graphullerene.
    Champagne A; Camarasa-Gómez M; Ricci F; Kronik L; Neaton JB
    Nano Lett; 2024 Jun; 24(23):7033-7039. PubMed ID: 38805193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple Screened Hydrogen Model of Excitons in Two-Dimensional Materials.
    Olsen T; Latini S; Rasmussen F; Thygesen KS
    Phys Rev Lett; 2016 Feb; 116(5):056401. PubMed ID: 26894722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical Excitonic Effects in Doped Two-Dimensional Semiconductors.
    Gao S; Liang Y; Spataru CD; Yang L
    Nano Lett; 2016 Sep; 16(9):5568-73. PubMed ID: 27479740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasiparticle and Optical Properties of Carrier-Doped Monolayer MoTe
    Champagne A; Haber JB; Pokawanvit S; Qiu DY; Biswas S; Atwater HA; da Jornada FH; Neaton JB
    Nano Lett; 2023 May; 23(10):4274-4281. PubMed ID: 37159934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quasiparticle and optical properties of strained stanene and stanane.
    Lu P; Wu L; Yang C; Liang D; Quhe R; Guan P; Wang S
    Sci Rep; 2017 Jun; 7(1):3912. PubMed ID: 28634387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Many-Body Effect and Device Performance Limit of Monolayer InSe.
    Wang Y; Fei R; Quhe R; Li J; Zhang H; Zhang X; Shi B; Xiao L; Song Z; Yang J; Shi J; Pan F; Lu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23344-23352. PubMed ID: 29916240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast Spontaneous Localization of a Jahn-Teller Exciton Polaron in Two-Dimensional Semiconducting CrI
    Li X; Wang A; Chen H; Tao W; Chen Z; Zhang C; Li Y; Zhang Y; Shang H; Weng YX; Zhao J; Zhu H
    Nano Lett; 2022 Nov; 22(21):8755-8762. PubMed ID: 36305523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sumanene Monolayer of Pure Carbon: A Two-Dimensional Kagome-Analogy Lattice with Desirable Band Gap, Ultrahigh Carrier Mobility, and Strong Exciton Binding Energy.
    Shi X; Gao W; Liu H; Fu ZG; Zhang G; Zhang YW; Liu T; Zhao J; Gao J
    Small; 2022 Oct; 18(40):e2203274. PubMed ID: 36050882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating Solvatochromic Shifts in Two-Dimensional Photocatalysts by Solving the Bethe-Salpeter Equation Coupled with Implicit Solvation Method.
    Kim SJ; Lebègue S; Ringe S; Kim H
    J Phys Chem Lett; 2024 May; 15(17):4575-4580. PubMed ID: 38639559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Family of Two-Dimensional Ternary Photoelectric Materials.
    Xu W; Wang R; Zheng B; Wu X; Xu H
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14457-14462. PubMed ID: 30912921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origin of the variation of exciton binding energy in semiconductors.
    Dvorak M; Wei SH; Wu Z
    Phys Rev Lett; 2013 Jan; 110(1):016402. PubMed ID: 23383813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate effect on excitonic shift and radiative lifetime of two-dimensional materials.
    Guo C; Xu J; Ping Y
    J Phys Condens Matter; 2021 May; 33(23):. PubMed ID: 33647889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the Electronic, Thermoelectric, and Excitonic Properties of Two-Dimensional Group-III Nitrides through Alloying for Optoelectronic Devices (B
    Wines D; Ersan F; Ataca C
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46416-46428. PubMed ID: 32942852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computed and Experimental Absorption Spectra of the Perovskite CH3NH3PbI3.
    Zhu X; Su H; Marcus RA; Michel-Beyerle ME
    J Phys Chem Lett; 2014 Sep; 5(17):3061-5. PubMed ID: 26278260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic to Isotropic Transition in Monolayer Group-IV Tellurides.
    Wang Q; Wu L; Urban A; Cao H; Lu P
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton Band Structure in Two-Dimensional Materials.
    Cudazzo P; Sponza L; Giorgetti C; Reining L; Sottile F; Gatti M
    Phys Rev Lett; 2016 Feb; 116(6):066803. PubMed ID: 26919006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Many-body effects and excitonic features in 2D biphenylene carbon.
    Lüder J; Puglia C; Ottosson H; Eriksson O; Sanyal B; Brena B
    J Chem Phys; 2016 Jan; 144(2):024702. PubMed ID: 26772582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quasiparticle band structures and optical properties of magnesium fluoride.
    Yi Z; Jia R
    J Phys Condens Matter; 2012 Feb; 24(8):085602. PubMed ID: 22277330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.