These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 28707944)
21. In Pursuit of 2D Materials for Maximum Optical Response. Gupta S; Shirodkar SN; Kutana A; Yakobson BI ACS Nano; 2018 Nov; 12(11):10880-10889. PubMed ID: 30226752 [TBL] [Abstract][Full Text] [Related]
22. Flat-Band-Enabled Triplet Excitonic Insulator in a Diatomic Kagome Lattice. Sethi G; Zhou Y; Zhu L; Yang L; Liu F Phys Rev Lett; 2021 May; 126(19):196403. PubMed ID: 34047585 [TBL] [Abstract][Full Text] [Related]
23. Accuracy trade-off between one-electron and excitonic spectra of cuprous halides in first-principles calculations. Wu Y; Jiang Z; Tan H; Li Y; Duan W J Chem Phys; 2021 Apr; 154(13):134704. PubMed ID: 33832243 [TBL] [Abstract][Full Text] [Related]
24. Tuning of excitons in phosphorene atomic chains. Huang W; Zhong J; Sheng W; Zhou A J Phys Condens Matter; 2023 Nov; 36(7):. PubMed ID: 37879347 [TBL] [Abstract][Full Text] [Related]
25. Equation-of-motion coupled-cluster study on exciton states of polyethylene with periodic boundary condition. Katagiri H J Chem Phys; 2005 Jun; 122(22):224901. PubMed ID: 15974710 [TBL] [Abstract][Full Text] [Related]
26. Excitons and Davydov splitting in sexithiophene from first-principles many-body Green's function theory. Leng X; Yin H; Liang D; Ma Y J Chem Phys; 2015 Sep; 143(11):114501. PubMed ID: 26395713 [TBL] [Abstract][Full Text] [Related]
27. Electronic excitations of bulk LiCl from many-body perturbation theory. Jiang YF; Wang NP; Rohlfing M J Chem Phys; 2013 Dec; 139(21):214710. PubMed ID: 24320397 [TBL] [Abstract][Full Text] [Related]
28. Probing ionization potential, electron affinity and self-energy effect on the spectral shape and exciton binding energy of quantum liquid water with self-consistent many-body perturbation theory and the Bethe-Salpeter equation. Ziaei V; Bredow T J Phys Condens Matter; 2018 May; 30(21):215502. PubMed ID: 29667601 [TBL] [Abstract][Full Text] [Related]
29. The electronic and optical properties of III-V binary 2D semiconductors: how to achieve high precision from accurate many-body methods. Kolos M; Karlický F Phys Chem Chem Phys; 2022 Nov; 24(44):27459-27466. PubMed ID: 36341928 [TBL] [Abstract][Full Text] [Related]
30. Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G0W0, GW0 and GW Calculations on Top of PBE and HSE06 Orbitals. Karlický F; Otyepka M J Chem Theory Comput; 2013 Sep; 9(9):4155-64. PubMed ID: 26592406 [TBL] [Abstract][Full Text] [Related]
31. Direct Determination of Band-Gap Renormalization in the Photoexcited Monolayer MoS_{2}. Liu F; Ziffer ME; Hansen KR; Wang J; Zhu X Phys Rev Lett; 2019 Jun; 122(24):246803. PubMed ID: 31322407 [TBL] [Abstract][Full Text] [Related]
32. Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors. Liang Y; Yang L Phys Rev Lett; 2015 Feb; 114(6):063001. PubMed ID: 25723215 [TBL] [Abstract][Full Text] [Related]
33. Quasiparticle energies and band gaps in graphene nanoribbons. Yang L; Park CH; Son YW; Cohen ML; Louie SG Phys Rev Lett; 2007 Nov; 99(18):186801. PubMed ID: 17995426 [TBL] [Abstract][Full Text] [Related]
34. Tunable relativistic quasiparticle electronic and excitonic behavior of the FAPb(I Muhammad Z; Liu P; Ahmad R; Jalali Asadabadi S; Franchini C; Ahmad I Phys Chem Chem Phys; 2020 Jun; 22(21):11943-11955. PubMed ID: 32412023 [TBL] [Abstract][Full Text] [Related]
35. Quasiparticle semiconductor band structures including spin-orbit interactions. Malone BD; Cohen ML J Phys Condens Matter; 2013 Mar; 25(10):105503. PubMed ID: 23396813 [TBL] [Abstract][Full Text] [Related]
36. Optically Discriminating Carrier-Induced Quasiparticle Band Gap and Exciton Energy Renormalization in Monolayer MoS_{2}. Yao K; Yan A; Kahn S; Suslu A; Liang Y; Barnard ES; Tongay S; Zettl A; Borys NJ; Schuck PJ Phys Rev Lett; 2017 Aug; 119(8):087401. PubMed ID: 28952768 [TBL] [Abstract][Full Text] [Related]
37. Quasiparticle effects on the linear and nonlinear susceptibility of ZnGeP Xie H; Fang S; Zhao H; Xu X; Ye N; Zhuang W RSC Adv; 2019 Oct; 9(61):35771-35779. PubMed ID: 35528062 [TBL] [Abstract][Full Text] [Related]
38. A Unified View of Topological Phase Transition in Band Theory. Huang H; Liu F Research (Wash D C); 2020; 2020():7832610. PubMed ID: 32529188 [TBL] [Abstract][Full Text] [Related]
39. Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide. Faber C; Boulanger P; Duchemin I; Attaccalite C; Blase X J Chem Phys; 2013 Nov; 139(19):194308. PubMed ID: 24320327 [TBL] [Abstract][Full Text] [Related]
40. Quasi-particle energies and optical excitations of hydrogenated and fluorinated germanene. Shu H; Li Y; Wang S; Wang J Phys Chem Chem Phys; 2015 Feb; 17(6):4542-50. PubMed ID: 25583554 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]