These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 28708056)
1. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Liao X; Lovett B; Fang W; St Leger RJ Microbiology (Reading); 2017 Jul; 163(7):980-991. PubMed ID: 28708056 [TBL] [Abstract][Full Text] [Related]
2. Trichoderma virens, a plant beneficial fungus, enhances biomass production and promotes lateral root growth through an auxin-dependent mechanism in Arabidopsis. Contreras-Cornejo HA; Macías-Rodríguez L; Cortés-Penagos C; López-Bucio J Plant Physiol; 2009 Mar; 149(3):1579-92. PubMed ID: 19176721 [TBL] [Abstract][Full Text] [Related]
3. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Sasan RK; Bidochka MJ Am J Bot; 2012 Jan; 99(1):101-7. PubMed ID: 22174335 [TBL] [Abstract][Full Text] [Related]
4. Metarhizium robertsii produces an extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. Liao X; Fang W; Lin L; Lu HL; St Leger RJ PLoS One; 2013; 8(10):e78118. PubMed ID: 24205119 [TBL] [Abstract][Full Text] [Related]
5. DNA methyltransferase implicated in the recovery of conidiation, through successive plant passages, in phenotypically degenerated Metarhizium. Hu S; Bidochka MJ Appl Microbiol Biotechnol; 2020 Jun; 104(12):5371-5383. PubMed ID: 32318770 [TBL] [Abstract][Full Text] [Related]
6. Auxin and Tryptophan Homeostasis Are Facilitated by the ISS1/VAS1 Aromatic Aminotransferase in Arabidopsis. Pieck M; Yuan Y; Godfrey J; Fisher C; Zolj S; Vaughan D; Thomas N; Wu C; Ramos J; Lee N; Normanly J; Celenza JL Genetics; 2015 Sep; 201(1):185-99. PubMed ID: 26163189 [TBL] [Abstract][Full Text] [Related]
7. Indole-3-butyric acid induces lateral root formation via peroxisome-derived indole-3-acetic acid and nitric oxide. Schlicht M; Ludwig-Müller J; Burbach C; Volkmann D; Baluska F New Phytol; 2013 Oct; 200(2):473-482. PubMed ID: 23795714 [TBL] [Abstract][Full Text] [Related]
8. Disruptions of the genes involved in lysine biosynthesis, iron acquisition, and secondary metabolisms affect virulence and fitness in Metarhizium robertsii. Donzelli BGG; Turgeon BG; Gibson DM; Krasnoff SB Fungal Genet Biol; 2017 Jan; 98():23-34. PubMed ID: 27876630 [TBL] [Abstract][Full Text] [Related]
10. Characterization of CYCLOPHILLIN38 shows that a photosynthesis-derived systemic signal controls lateral root emergence. Duan L; Pérez-Ruiz JM; Cejudo FJ; Dinneny JR Plant Physiol; 2021 Mar; 185(2):503-518. PubMed ID: 33721893 [TBL] [Abstract][Full Text] [Related]
11. The effects of mepiquat chloride on the lateral root initiation of cotton seedlings are associated with auxin and auxin-conjugate homeostasis. Chen X; Zhang M; Wang M; Tan G; Zhang M; Hou YX; Wang B; Li Z BMC Plant Biol; 2018 Dec; 18(1):361. PubMed ID: 30563457 [TBL] [Abstract][Full Text] [Related]
12. Conversion of endogenous indole-3-butyric acid to indole-3-acetic acid drives cell expansion in Arabidopsis seedlings. Strader LC; Culler AH; Cohen JD; Bartel B Plant Physiol; 2010 Aug; 153(4):1577-86. PubMed ID: 20562230 [TBL] [Abstract][Full Text] [Related]
13. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. Fattorini L; Veloccia A; Della Rovere F; D'Angeli S; Falasca G; Altamura MM BMC Plant Biol; 2017 Jul; 17(1):121. PubMed ID: 28693423 [TBL] [Abstract][Full Text] [Related]
14. Indole-3-Acetic Acid Is Synthesized by the Endophyte Jahn L; Hofmann U; Ludwig-Müller J Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33800748 [TBL] [Abstract][Full Text] [Related]
15. Alternative transcription start site selection in Mr-OPY2 controls lifestyle transitions in the fungus Metarhizium robertsii. Guo N; Qian Y; Zhang Q; Chen X; Zeng G; Zhang X; Mi W; Xu C; St Leger RJ; Fang W Nat Commun; 2017 Nov; 8(1):1565. PubMed ID: 29146899 [TBL] [Abstract][Full Text] [Related]
16. Localization of the insect pathogenic fungal plant symbionts Metarhizium robertsii and Metarhizium brunneum in bean and corn roots. Lahey S; Angelone S; DeBartolo MO; Coutinho-Rodrigues C; Bidochka MJ Fungal Biol; 2020 Oct; 124(10):877-883. PubMed ID: 32948275 [TBL] [Abstract][Full Text] [Related]
17. Phospholipid homeostasis maintains cell polarity, development and virulence in metarhizium robertsii. Gao Q; Lu Y; Yao H; Xu YJ; Huang W; Wang C Environ Microbiol; 2016 Nov; 18(11):3976-3990. PubMed ID: 27312218 [TBL] [Abstract][Full Text] [Related]
18. Availability of carbon and nitrogen in soil affects Metarhizium robertsii root colonization and transfer of insect-derived nitrogen. Barelli L; Behie SW; Bidochka MJ FEMS Microbiol Ecol; 2019 Oct; 95(10):. PubMed ID: 31504453 [TBL] [Abstract][Full Text] [Related]
19. Trichoderma spp. Improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na⁺ elimination through root exudates. Contreras-Cornejo HA; Macías-Rodríguez L; Alfaro-Cuevas R; López-Bucio J Mol Plant Microbe Interact; 2014 Jun; 27(6):503-14. PubMed ID: 24502519 [TBL] [Abstract][Full Text] [Related]
20. Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Nishimura T; Hayashi K; Suzuki H; Gyohda A; Takaoka C; Sakaguchi Y; Matsumoto S; Kasahara H; Sakai T; Kato J; Kamiya Y; Koshiba T Plant J; 2014 Feb; 77(3):352-66. PubMed ID: 24299123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]