These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28708120)

  • 1. On Operating a Nanofiltration Membrane for Olive Mill Wastewater Purification at Sub- and Super-Boundary Conditions.
    Stoller M; Ochando-Pulido JM; Field R
    Membranes (Basel); 2017 Jul; 7(3):. PubMed ID: 28708120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Flux Performance of Different RO/NF Membranes in the Treatment of Agroindustrial Wastewater by Means of the Boundary Flux Theory.
    Ochando-Pulido JM; Martínez-Férez A; Stoller M
    Membranes (Basel); 2018 Dec; 9(1):. PubMed ID: 30587807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control systems for olive mill wastewater treatment with ultrafiltration and nanofiltration membrane in series based on the boundary flux theory.
    Ochando-Pulido JM
    Water Sci Technol; 2017 Dec; 76(11-12):2968-2978. PubMed ID: 29210684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. About merging threshold and critical flux concepts into a single one: the boundary flux.
    Stoller M; Ochando-Pulido JM
    ScientificWorldJournal; 2014; 2014():656101. PubMed ID: 24592177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fouling of reverse osmosis and nanofiltration membranes by dairy industry effluents.
    Turan M; Ates A; Inanc B
    Water Sci Technol; 2002; 45(12):355-60. PubMed ID: 12201123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective treatment of olive mill effluents from two-phase and three-phase extraction processes by batch membranes in series operation upon threshold conditions.
    Ochando-Pulido JM; Hodaifa G; Victor-Ortega MD; Rodriguez-Vives S; Martinez-Ferez A
    J Hazard Mater; 2013 Dec; 263 Pt 1():168-76. PubMed ID: 23602253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on the use of membrane technology and fouling control for olive mill wastewater treatment.
    Pulido JM
    Sci Total Environ; 2016 Sep; 563-564():664-75. PubMed ID: 26472261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impacts of operating conditions on nanofiltration of secondary-treated two-phase olive mill wastewater.
    Ochando Pulido JM; Martínez Férez A
    J Environ Manage; 2015 Sep; 161():219-227. PubMed ID: 26186549
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification.
    Ochando-Pulido JM; Martinez-Ferez A
    Membranes (Basel); 2015 Sep; 5(4):513-31. PubMed ID: 26426062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation.
    Su YC; Huang CP; Pan JR; Lee HC
    Water Sci Technol; 2008; 57(4):601-5. PubMed ID: 18360002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Successful integration of membrane technologies in a conventional purification process of tannery wastewater streams.
    Stoller M; Sacco O; Sannino D; Chianese A
    Membranes (Basel); 2013 Jul; 3(3):126-35. PubMed ID: 24956941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design considerations for wastewater treatment by reverse osmosis.
    Bartels CR; Wilf M; Andes K; Iong J
    Water Sci Technol; 2005; 51(6-7):473-82. PubMed ID: 16004010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance modeling and cost analysis of a pilot-scale reverse osmosis process for the final purification of olive mill wastewater.
    Ochando-Pulido JM; Hodaifa G; Victor-Ortega MD; Martinez-Ferez A
    Membranes (Basel); 2013 Oct; 3(4):285-97. PubMed ID: 24957058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Olive mill wastewater treatment in a membrane bioreactor: process stability and fouling aspects.
    Dhaouadi H; Marrot B
    Environ Technol; 2010 Jun; 31(7):761-70. PubMed ID: 20586238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal Fouling of Nanofiltration Membranes: Development of a Standard Operating Procedure.
    Al Mamun MA; Bhattacharjee S; Pernitsky D; Sadrzadeh M
    Membranes (Basel); 2017 Jan; 7(1):. PubMed ID: 28106775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fouling and wetting in the membrane distillation driven wastewater reclamation process - A review.
    Choudhury MR; Anwar N; Jassby D; Rahaman MS
    Adv Colloid Interface Sci; 2019 Jul; 269():370-399. PubMed ID: 31129338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater.
    Ochando-Pulido JM; Rodriguez-Vives S; Hodaifa G; Martinez-Ferez A
    Water Res; 2012 Oct; 46(15):4621-32. PubMed ID: 22771149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater.
    Benítez FJ; Acero JL; Leal AI; González M
    J Hazard Mater; 2009 Mar; 162(2-3):1438-45. PubMed ID: 18650003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Operation setup of a nanofiltration membrane unit for purification of two-phase olives and olive oil washing wastewaters.
    Ochando-Pulido JM; Martinez-Ferez A
    Sci Total Environ; 2018 Jan; 612():758-766. PubMed ID: 28866403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-up of Sterilizing-grade Membrane Filters from Discs to Pleated Cartridges: Effects of Operating Parameters and Solution Properties.
    Kumar A; Martin J; Kuriyel R
    PDA J Pharm Sci Technol; 2015; 69(1):74-87. PubMed ID: 25691716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.