These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 28708155)
21. Numerical analysis of a novel two-stage enlargement and adaptive correction approach for the annular aberration compensation. Sun C; Wang D; Deng X; Yuan Q; Hu D; Sun L; Zheng Y; Huang L Opt Express; 2019 Sep; 27(18):25205-25227. PubMed ID: 31510397 [TBL] [Abstract][Full Text] [Related]
22. Dynamic Aberration Correction for Conformal Window of High-Speed Aircraft Using Optimized Model-Based Wavefront Sensorless Adaptive Optics. Dong B; Li Y; Han XL; Hu B Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598161 [TBL] [Abstract][Full Text] [Related]
23. Influence of neodymium:YAG laser capsulotomy on ocular wavefront aberrations in pseudophakic eyes with hydrophilic and hydrophobic intraocular lenses. Rozema JJ; Koppen C; de Groot V; Tassignon MJ J Cataract Refract Surg; 2009 Nov; 35(11):1906-10. PubMed ID: 19878822 [TBL] [Abstract][Full Text] [Related]
24. Terahertz adaptive optics with a deformable mirror. Brossard M; Sauvage JF; Perrin M; Abraham E Opt Lett; 2018 Apr; 43(7):1594-1597. PubMed ID: 29601038 [TBL] [Abstract][Full Text] [Related]
25. DiPOLE: a 10 J, 10 Hz cryogenic gas cooled multi-slab nanosecond Yb:YAG laser. Banerjee S; Ertel K; Mason PD; Phillips PJ; De Vido M; Smith JM; Butcher TJ; Hernandez-Gomez C; Greenhalgh RJ; Collier JL Opt Express; 2015 Jul; 23(15):19542-51. PubMed ID: 26367612 [TBL] [Abstract][Full Text] [Related]
26. Use of adaptive optics to determine the optimal ocular spherical aberration. Piers PA; Manzanera S; Prieto PM; Gorceix N; Artal P J Cataract Refract Surg; 2007 Oct; 33(10):1721-6. PubMed ID: 17889766 [TBL] [Abstract][Full Text] [Related]
27. Diode-side-pumped joule-level square-rod Nd:glass amplifier with 1 Hz repetition rate and ultrahigh gain. Yao K; Xie X; Tang J; Fan C; Gao S; Lu Z; Chen Z; Xue Q; Zheng K; Zhu Q Opt Express; 2019 Nov; 27(23):32912-32923. PubMed ID: 31878367 [TBL] [Abstract][Full Text] [Related]
28. Compact integrated aberration-compensating module for a 9 kW Nd:YAG slab laser based on an off-axis stable-unstable resonator. Li WJ; Guo YD; Zhang L; Shao CF; Li Y; Chen ZZ; Wang XJ; Bo Y; Cui DF; Peng QJ Appl Opt; 2022 Oct; 61(30):8917-8925. PubMed ID: 36607018 [TBL] [Abstract][Full Text] [Related]
29. Composite, all-ceramics, high-peak power Nd:YAG/Cr(4+):YAG monolithic micro-laser with multiple-beam output for engine ignition. Pavel N; Tsunekane M; Taira T Opt Express; 2011 May; 19(10):9378-84. PubMed ID: 21643194 [TBL] [Abstract][Full Text] [Related]
30. Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system. Song H; Fraanje R; Schitter G; Kroese H; Vdovin G; Verhaegen M Opt Express; 2010 Nov; 18(23):24070-84. PubMed ID: 21164754 [TBL] [Abstract][Full Text] [Related]
31. Adaptive optics for ophthalmic applications using a pyramid wavefront sensor. Chamot SR; Dainty C; Esposito S Opt Express; 2006 Jan; 14(2):518-26. PubMed ID: 19503366 [TBL] [Abstract][Full Text] [Related]
32. Laser driver for soft-x-ray projection lithography. Hackel LA; Beach RJ; Dane CB; Zapata LE Appl Opt; 1993 Dec; 32(34):6914-9. PubMed ID: 20856545 [TBL] [Abstract][Full Text] [Related]
33. Q-switched Nd:YAG optical vortex lasers. Kim DJ; Kim JW; Clarkson WA Opt Express; 2013 Dec; 21(24):29449-54. PubMed ID: 24514499 [TBL] [Abstract][Full Text] [Related]
34. Picosecond Raman compression laser at 1530 nm with aberration compensation. Kulagin OV; Gorbunov IA; Sergeev AM; Valley M Opt Lett; 2013 Sep; 38(17):3237-40. PubMed ID: 23988923 [TBL] [Abstract][Full Text] [Related]
35. Beam quality management by periodic reproduction of wavefront aberrations in end-pumped Nd:YVO Liu B; Liu C; Shen L; Wang C; Ye Z; Liu D; Xiang Z Opt Express; 2016 Apr; 24(8):8988-96. PubMed ID: 27137329 [TBL] [Abstract][Full Text] [Related]
36. 12 J, 10 Hz diode-pumped Nd:YAG distributed active mirror amplifier chain with ASE suppression. Liu T; Sui Z; Chen L; Li Z; Liu Q; Gong M; Fu X Opt Express; 2017 Sep; 25(18):21981-21992. PubMed ID: 29041488 [TBL] [Abstract][Full Text] [Related]
37. Reliable Stimulated Brillouin Scattering Compression of Nd:YAG Laser Pulses with Liquid Fluorocarbon for Long-Time Operation at 10 Hz. Kmetik V; Fiedorowicz H; Andreev AA; Witte KJ; Daido H; Fujita H; Nakatsuka M; Yamanaka T Appl Opt; 1998 Oct; 37(30):7085-90. PubMed ID: 18301529 [TBL] [Abstract][Full Text] [Related]
38. Optimization of the dynamic wavefront control of a pulsed kilojoule/nanosecond-petawatt laser facility. Zou JP; Sautivet AM; Fils J; Martin L; Abdeli K; Sauteret C; Wattellier B Appl Opt; 2008 Feb; 47(5):704-10. PubMed ID: 18268782 [TBL] [Abstract][Full Text] [Related]
39. Effects of monochromatic aberration on visual acuity using adaptive optics. Li S; Xiong Y; Li J; Wang N; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y; He JC Optom Vis Sci; 2009 Jul; 86(7):868-74. PubMed ID: 19521271 [TBL] [Abstract][Full Text] [Related]
40. Dual-rod, 100 Hz, 388 mJ nanosecond Nd:YAG oscillator. Liu Q; Liu J; Gong M Appl Opt; 2011 Mar; 50(8):1186-9. PubMed ID: 21394190 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]