These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 28708404)

  • 1. Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection.
    Yao B; Yu C; Wu Y; Huang SW; Wu H; Gong Y; Chen Y; Li Y; Wong CW; Fan X; Rao Y
    Nano Lett; 2017 Aug; 17(8):4996-5002. PubMed ID: 28708404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Phonon Addition and Subtraction to a Mechanical Thermal State.
    Enzian G; Price JJ; Freisem L; Nunn J; Janousek J; Buchler BC; Lam PK; Vanner MR
    Phys Rev Lett; 2021 Jan; 126(3):033601. PubMed ID: 33543972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Monolithic Graphene-Functionalized Microlaser for Multispecies Gas Detection.
    Guo Y; Li Z; An N; Guo Y; Wang Y; Yuan Y; Zhang H; Tan T; Wu C; Peng B; Soavi G; Rao Y; Yao B
    Adv Mater; 2022 Dec; 34(51):e2207777. PubMed ID: 36210725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brillouin cavity optomechanics with microfluidic devices.
    Bahl G; Kim KH; Lee W; Liu J; Fan X; Carmon T
    Nat Commun; 2013; 4():1994. PubMed ID: 23744103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optomechanical dissipative solitons.
    Zhang J; Peng B; Kim S; Monifi F; Jiang X; Li Y; Yu P; Liu L; Liu YX; Alù A; Yang L
    Nature; 2021 Dec; 600(7887):75-80. PubMed ID: 34853455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Sensitive Hydrogen Sensor Based on an Optical Driven Nanofilm Resonator.
    Luo J; Liu S; Chen P; Chen Y; Zhong J; Wang Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29357-29365. PubMed ID: 35704433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator.
    Fang Z; Haque S; Lin J; Wu R; Zhang J; Wang M; Zhou J; Rafa M; Lu T; Cheng Y
    Opt Lett; 2019 Mar; 44(5):1214-1217. PubMed ID: 30821751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and testing of microfluidic optomechanical oscillators.
    Han K; Kim KH; Kim J; Lee W; Liu J; Fan X; Carmon T; Bahl G
    J Vis Exp; 2014 May; (87):. PubMed ID: 24962013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cascade Brillouin Lasing in a Tellurite-Glass Microsphere Resonator with Whispering Gallery Modes.
    Anashkina EA; Marisova MP; Dorofeev VV; Andrianov AV
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical sensing in graphene-enhanced microfiber resonators with individual molecule sensitivity and selectivity.
    Cao Z; Yao B; Qin C; Yang R; Guo Y; Zhang Y; Wu Y; Bi L; Chen Y; Xie Z; Peng G; Huang SW; Wong CW; Rao Y
    Light Sci Appl; 2019; 8():107. PubMed ID: 31798846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical multistability and Fano line-shape control via mode coupling in whispering-gallery-mode microresonator optomechanics.
    Zhang S; Li J; Yu R; Wang W; Wu Y
    Sci Rep; 2017 Jan; 7():39781. PubMed ID: 28045120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrasensitive Gas Sensors Based on Vertical Graphene Nanowalls/SiC/Si Heterostructure.
    Roy PK; Haider G; Chou TC; Chen KH; Chen LC; Chen YF; Liang CT
    ACS Sens; 2019 Feb; 4(2):406-412. PubMed ID: 30663312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proposal for a quantum traveling Brillouin resonator.
    Harris GI; Sawadsky A; Sfendla YL; Wasserman WW; Bowen WP; Baker CG
    Opt Express; 2020 Jul; 28(15):22450-22461. PubMed ID: 32752505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.
    Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA
    Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phonon counting and intensity interferometry of a nanomechanical resonator.
    Cohen JD; Meenehan SM; MacCabe GS; Gröblacher S; Safavi-Naeini AH; Marsili F; Shaw MD; Painter O
    Nature; 2015 Apr; 520(7548):522-5. PubMed ID: 25903632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoelectronic Heterodyne Sensor: A New Electronic Sensing Paradigm.
    Kulkarni GS; Zang W; Zhong Z
    Acc Chem Res; 2016 Nov; 49(11):2578-2586. PubMed ID: 27668314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultracompact optical fiber acoustic sensors based on a fiber-top spirally-suspended optomechanical microresonator.
    Yao M; Zhang Y; Ouyang X; Ping Zhang A; Tam HY; Wai PKA
    Opt Lett; 2020 Jul; 45(13):3516-3519. PubMed ID: 32630887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene acoustic plasmon resonator for ultrasensitive infrared spectroscopy.
    Lee IH; Yoo D; Avouris P; Low T; Oh SH
    Nat Nanotechnol; 2019 Apr; 14(4):313-319. PubMed ID: 30742134
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Part-per-Trillion Trace Selective Gas Detection Using Frequency Locked Whispering-Gallery Mode Microtoroids.
    Li C; Lohrey T; Nguyen PD; Min Z; Tang Y; Ge C; Sercel ZP; McLeod E; Stoltz BM; Su J
    ACS Appl Mater Interfaces; 2022 Sep; 14(37):42430-42440. PubMed ID: 36049126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrically Tunable Four-Wave-Mixing in Graphene Heterogeneous Fiber for Individual Gas Molecule Detection.
    An N; Tan T; Peng Z; Qin C; Yuan Z; Bi L; Liao C; Wang Y; Rao Y; Soavi G; Yao B
    Nano Lett; 2020 Sep; 20(9):6473-6480. PubMed ID: 32786928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.