BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28708445)

  • 1. Evaluation of YAP signaling in a rat tympanic membrane under a continuous negative pressure load and in human middle ear cholesteatoma.
    Akiyama N; Yamamoto-Fukuda T; Yoshikawa M; Kojima H
    Acta Otolaryngol; 2017 Nov; 137(11):1158-1165. PubMed ID: 28708445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L1CAM-ILK-YAP Mechanotransduction Drives Proliferative Activity of Epithelial Cells in Middle Ear Cholesteatoma.
    Yamamoto-Fukuda T; Akiyama N; Kojima H
    Am J Pathol; 2020 Aug; 190(8):1667-1679. PubMed ID: 32360569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of continuous negative pressure in the rat middle ear.
    Akiyama N; Yamamoto-Fukuda T; Takahashi H
    Laryngoscope; 2014 Oct; 124(10):2404-10. PubMed ID: 24916143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gerbilline cholesteatoma development. Part II: temporal histopathologic changes in the tympanic membrane and middle ear.
    Tinling SP; Chole RA
    Otolaryngol Head Neck Surg; 2006 Jun; 134(6):953-60. PubMed ID: 16730537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Keratinocyte growth factor signaling promotes stem/progenitor cell proliferation under p63 expression during middle ear cholesteatoma formation.
    Yamamoto-Fukuda T; Akiyama N
    Curr Opin Otolaryngol Head Neck Surg; 2020 Oct; 28(5):291-295. PubMed ID: 32796271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleoplasm staining patterns and cell cycle-associated expression of Ki-67 in middle ear cholesteatoma.
    Raynov AM; Moon SK; Choung YH; Hong SP; Park K
    Am J Otolaryngol; 2005; 26(5):296-301. PubMed ID: 16137526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Proliferative potential of the ear drum in the process of gerbiline cholesteatoma formation].
    Shimoya S; Makino K; Omura F; Amatsu M
    Nihon Jibiinkoka Gakkai Kaiho; 1998 Aug; 101(8):1029-37. PubMed ID: 9778949
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteopontin-driven partial epithelial-mesenchymal transition governs the development of middle ear cholesteatoma.
    Zeng L; Xie L; Hu J; He C; Liu A; Lu X; Zhou W
    Cell Cycle; 2024 Mar; 23(5):537-554. PubMed ID: 38662954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunohistochemical analysis of retraction pocket pars tensa of tympanic membrane in children.
    Urík M; Hurník P; Žiak D; Machač J; Šlapák I; Motyka O; Jabandžiev P
    Int J Pediatr Otorhinolaryngol; 2019 Jul; 122():111-116. PubMed ID: 30999159
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial Epithelial-Mesenchymal Transition Was Observed Under p63 Expression in Acquired Middle Ear Cholesteatoma and Congenital Cholesteatoma.
    Takahashi M; Yamamoto-Fukuda T; Akiyama N; Motegi M; Yamamoto K; Tanaka Y; Yamamoto Y; Kojima H
    Otol Neurotol; 2019 Sep; 40(8):e803-e811. PubMed ID: 31348131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunohistochemical study of cell proliferation using BrdU labelling on tympanic membrane, external auditory canal and induced cholesteatoma in Mongolian gerbils.
    Park K; Chun YM; Park HJ; Lee YD
    Acta Otolaryngol; 1999; 119(8):874-9. PubMed ID: 10728926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Does occurrence of keratinizing stratified squamous epithelium in the middle-ear cavity always indicate a cholesteatoma?
    Stenfors LE
    J Laryngol Otol; 2004 Oct; 118(10):757-63. PubMed ID: 15550180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localization of intercellular adhesion molecule-1 in middle ear cholesteatoma.
    Shinoda H; Huang CC
    Eur Arch Otorhinolaryngol; 1995; 252(7):385-90. PubMed ID: 8562031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunohistochemical analysis of the cytokeratin expression in middle ear cholesteatoma and related epithelial tissues.
    Broekaert D; Coucke P; Leperque S; Ramaekers F; Van Muijen G; Boedts D; Leigh I; Lane B
    Ann Otol Rhinol Laryngol; 1992 Nov; 101(11):931-8. PubMed ID: 1280020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The spatial organisation of keratinocytes in acquired middle ear cholesteatoma resembles that of external auditory canal skin and pars flaccida.
    Youngs R; Rowles P
    Acta Otolaryngol; 1990; 110(1-2):115-9. PubMed ID: 2386026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of middle ear effusions and epidermal growth factor in cholesteatoma formation in the gerbilline temporal bone.
    Omura F; Makino K; Amatsu M; Itoh H
    Eur Arch Otorhinolaryngol; 1995; 252(7):428-32. PubMed ID: 8562039
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Congenital cholesteatomas in the tympanic membrane.
    Weber PC; Adkins WY
    Laryngoscope; 1997 Sep; 107(9):1181-4. PubMed ID: 9292600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attic cholesteatoma with closure of the entrance to pars flaccida retraction pocket.
    Matsuzawa S; Iino Y; Yamamoto D; Hasegawa M; Hara M; Shinnabe A; Kanazawa H; Yoshida N
    Auris Nasus Larynx; 2017 Dec; 44(6):766-770. PubMed ID: 28041650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of involucrin in human middle ear cholesteatoma.
    Chao WY; Huang CC
    Am J Otol; 1989 Sep; 10(5):385-8. PubMed ID: 2683803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attic cholesteatoma with tiny retraction of pars flaccida.
    Lee JH; Hong SM; Kim CW; Park YH; Baek SH
    Auris Nasus Larynx; 2015 Apr; 42(2):107-12. PubMed ID: 25199742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.