These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28709043)

  • 1. Improvement effects of cytokinin on EDTA assisted phytoremediation and the associated environmental risks.
    Luo J; Cai L; Qi S; Wu J; Gu XWS
    Chemosphere; 2017 Oct; 185():386-393. PubMed ID: 28709043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-technique phytoremediation approach to purify metals contaminated soil from e-waste recycling site.
    Luo J; Cai L; Qi S; Wu J; Sophie Gu X
    J Environ Manage; 2017 Dec; 204(Pt 1):17-22. PubMed ID: 28846891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of direct and alternating current electric fields on efficiency promotion and leaching risk alleviation of chelator assisted phytoremediation.
    Luo J; Cai L; Qi S; Wu J; Sophie Gu X
    Ecotoxicol Environ Saf; 2018 Mar; 149():241-247. PubMed ID: 29241117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The phytoremediation efficiency of Eucalyptus globulus treated by static magnetic fields before sowing.
    Luo J; He W; Xing X; Wu J; Gu XWS
    Chemosphere; 2019 Jul; 226():891-897. PubMed ID: 31509918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A real scale phytoremediation of multi-metal contaminated e-waste recycling site with Eucalyptus globulus assisted by electrical fields.
    Luo J; Wu J; Huo S; Qi S; Gu XS
    Chemosphere; 2018 Jun; 201():262-268. PubMed ID: 29525653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An evaluation of EDTA additions for improving the phytoremediation efficiency of different plants under various cultivation systems.
    Luo J; Qi S; Gu XW; Wang J; Xie X
    Ecotoxicology; 2016 May; 25(4):646-54. PubMed ID: 26846211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites.
    Luo J; Qi S; Peng L; Wang J
    Int J Phytoremediation; 2016; 18(4):308-14. PubMed ID: 26458117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing storage battery and solar cell in assisting Eucalyptus Globulus to phytoremediate soil polluted by Cd, Pb, and Cu.
    Luo J; He M; Wu J; Huo S; Gu XS
    Int J Phytoremediation; 2019; 21(3):181-190. PubMed ID: 30656980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of planting density and harvest protocol on field-scale phytoremediation efficiency by Eucalyptus globulus.
    Luo J; He M; Qi S; Wu J; Gu XS
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11343-11350. PubMed ID: 29417481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of Eucalyptus globulus to red and blue light with different combinations and their influence on its efficacy for contaminated soil phytoremediation.
    Luo J; He W; Wu J; Sophie Gu X
    J Environ Manage; 2019 Jul; 241():235-242. PubMed ID: 31005001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecological Risk Assessment of EDTA-Assisted Phytoremediation of Cd Under Different Cultivation Systems.
    Luo J; Qi S; Gu X; Hou T; Lin L
    Bull Environ Contam Toxicol; 2016 Feb; 96(2):259-64. PubMed ID: 26499324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation potential of cadmium-contaminated soil by Eucalyptus globulus under different coppice systems.
    Luo J; Qi S; Peng L; Xie X
    Bull Environ Contam Toxicol; 2015 Mar; 94(3):321-5. PubMed ID: 25543544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Balance Between Soil Remediation and Economic Benefits of Eucalyptus globulus.
    Xing Y; Wang Z; Zhang C; He W; Luo J
    Bull Environ Contam Toxicol; 2019 Jun; 102(6):887-891. PubMed ID: 30976836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS.
    Luo C; Shen Z; Li X
    Chemosphere; 2005 Mar; 59(1):1-11. PubMed ID: 15698638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EDTA-assisted phytoextraction of heavy metals by turfgrass from municipal solid waste compost using permeable barriers and associated potential leaching risk.
    Zhao S; Lian F; Duo L
    Bioresour Technol; 2011 Jan; 102(2):621-6. PubMed ID: 20797852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metal remediation with Ficus microcarpa through transplantation and its environmental risks through field scale experiment.
    Luo J; Cai L; Qi S; Wu J; Gu XS
    Chemosphere; 2018 Feb; 193():244-250. PubMed ID: 29136571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chelant-enhanced heavy metal uptake by Eucalyptus trees under controlled deficit irrigation.
    Fine P; Paresh R; Beriozkin A; Hass A
    Sci Total Environ; 2014 Sep; 493():995-1005. PubMed ID: 25014186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solubility and accumulation of metals in Chinese brake fern, vetiver and rostrate sesbania using chelating agents.
    Lou LQ; Ye ZH; Wong MH
    Int J Phytoremediation; 2007; 9(4):325-43. PubMed ID: 18246709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Enhancement of GA3 and EDTA on Lolium perenne to remediate Pb contaminated soil and its detoxification mechanism].
    Wu QL; Wang WC; He SY
    Ying Yong Sheng Tai Xue Bao; 2014 Oct; 25(10):2999-3005. PubMed ID: 25796911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using solar cell to phytoremediate field-scale metal polluted soil assisted by electric field.
    Luo J; Yang D; Qi S; Wu J; Gu XS
    Ecotoxicol Environ Saf; 2018 Dec; 165():404-410. PubMed ID: 30218963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.