These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 28709043)

  • 21. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil.
    Lu K; Yang X; Gielen G; Bolan N; Ok YS; Niazi NK; Xu S; Yuan G; Chen X; Zhang X; Liu D; Song Z; Liu X; Wang H
    J Environ Manage; 2017 Jan; 186(Pt 2):285-292. PubMed ID: 27264699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain.
    Lu Y; Luo D; Lai A; Liu G; Liu L; Long J; Zhang H; Chen Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1845-1853. PubMed ID: 27796994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. EDTA-assisted Pb phytoextraction.
    Saifullah ; Meers E; Qadir M; de Caritat P; Tack FM; Du Laing G; Zia MH
    Chemosphere; 2009 Mar; 74(10):1279-91. PubMed ID: 19121533
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.
    Anning AK; Akoto R
    Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process.
    Chen Y; Li X; Shen Z
    Chemosphere; 2004 Oct; 57(3):187-96. PubMed ID: 15312735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exogenous cytokinin treatments of an Ni hyper-accumulator, Alyssum murale, grown in a serpentine soil: implications for phytoextraction.
    Cassina L; Tassi E; Morelli E; Giorgetti L; Remorini D; Chaney RL; Barbafieri M
    Int J Phytoremediation; 2011; 13 Suppl 1():90-101. PubMed ID: 22046753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Redistribution of residual Pb, Zn, and Cd in soil remediated with EDTA leaching and exposed to earthworms (Eisenia fetida).
    Udovic M; Lestan D
    Environ Technol; 2010 May; 31(6):655-69. PubMed ID: 20540427
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat.
    Mahmood-Ul-Hassan M; Suthar V; Ahmad R; Yousra M
    Environ Monit Assess; 2017 Oct; 189(11):591. PubMed ID: 29086096
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of EDTA decontamination on soils affected by mining activities and impact of treatment on the geochemical partition of metal contaminants.
    Xia W; Gao H; Wang X; Zhou C; Liu Y; Fan T; Wang X
    J Hazard Mater; 2009 May; 164(2-3):936-40. PubMed ID: 18838220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact.
    Udovic M; Lestan D
    Chemosphere; 2012 Jul; 88(6):718-24. PubMed ID: 22591846
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic and biochemical characterization of rhizobacterial strains and their potential use in combination with chelants for assisted phytoremediation.
    Cicatelli A; Guarino F; Baldan E; Castiglione S
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8866-8878. PubMed ID: 27822692
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals.
    Meers E; Ruttens A; Hopgood MJ; Samson D; Tack FM
    Chemosphere; 2005 Feb; 58(8):1011-22. PubMed ID: 15664609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus.
    Zaier H; Ghnaya T; Ben Rejeb K; Lakhdar A; Rejeb S; Jemal F
    Bioresour Technol; 2010 Jun; 101(11):3978-83. PubMed ID: 20129779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil.
    Zhang H; Guo Q; Yang J; Ma J; Chen G; Chen T; Zhu G; Wang J; Zhang G; Wang X; Shao C
    Ecotoxicol Environ Saf; 2016 Nov; 133():57-62. PubMed ID: 27414256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fate of heavy metals and major nutrients in a sludge-soil-plant-leachate system during the sludge phyto-treatment process.
    Xu T; Qiu J; Wu QT; Guo X; Wei Z; Xie F; Wong JW
    Environ Technol; 2013; 34(13-16):2221-9. PubMed ID: 24350476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil.
    Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving the efficiency of phytoremediation using electrically charged plant and chelating agents.
    Tahmasbian I; Safari Sinegani AA
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2479-86. PubMed ID: 26423283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy metal leaching and environmental risk from the use of compost-like output as an energy crop growth substrate.
    Page K; Harbottle MJ; Cleall PJ; Hutchings TR
    Sci Total Environ; 2014 Jul; 487():260-71. PubMed ID: 24784751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils.
    Turgut C; Pepe MK; Cutright TJ
    Chemosphere; 2005 Feb; 58(8):1087-95. PubMed ID: 15664616
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.