These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 2870907)

  • 1. A new lidocaine metabolite, omega-diethylamino-2-hydroxymethyl-6-methylacetanilide.
    Kawai R; Fujita S; Suzuki T
    Drug Metab Dispos; 1986; 14(2):277-9. PubMed ID: 2870907
    [No Abstract]   [Full Text] [Related]  

  • 2. In-vitro metabolism of lignocaine to its N-oxide.
    Patterson LH; Hall G; Nijjar BS; Khatra PK; Cowan DA
    J Pharm Pharmacol; 1986 Apr; 38(4):326. PubMed ID: 2872305
    [No Abstract]   [Full Text] [Related]  

  • 3. Extraction of omega- and omega-1-hydroxylauric acids with ethyl acetate results in formation of acetoxy products.
    Salhab AS; Applewhite J; Couch MW; Okita RT; Shiverick KT
    Drug Metab Dispos; 1987; 15(2):233-6. PubMed ID: 2882984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An unusual metabolite of testosterone. 17 beta-Hydroxy-4,6-androstadiene-3-one.
    Nagata K; Liberato DJ; Gillette JR; Sasame HA
    Drug Metab Dispos; 1986; 14(5):559-65. PubMed ID: 2876862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsomal metabolism of pyrrolizidine alkaloids from Senecio jacobaea. Isolation and quantification of 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine and N-oxides by high performance liquid chromatography.
    Ramsdell HS; Kedzierski B; Buhler DR
    Drug Metab Dispos; 1987; 15(1):32-6. PubMed ID: 2881756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propofol inhibits lidocaine metabolism in human and rat liver microsomes.
    Inomata S; Nagashima A; Osaka Y; Kazama T; Tanaka E; Sato S; Toyooka H
    J Anesth; 2003; 17(4):246-50. PubMed ID: 14625712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new pathway for the oxidative metabolism of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; George JW; Pohl LR
    Drug Metab Dispos; 1982; 10(5):439-45. PubMed ID: 6128189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolism of 4-nitroaniline by rat liver microsomes.
    Anderson MM; Mays JB; Mitchum RK; Hinson JA
    Drug Metab Dispos; 1984; 12(2):179-85. PubMed ID: 6144483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of lidocaine by liver microsomes from streptozotocin-diabetic rats.
    Gawrońska-Szklarz B; Musial D; Droździk M; Paprota B
    Pol J Pharmacol; 2003; 55(2):251-4. PubMed ID: 12926555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reductive dechlorination of chloramphenicol by rat liver microsomes.
    Morris PL; Burke TR; Phol LR
    Drug Metab Dispos; 1983; 11(2):126-30. PubMed ID: 6133716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative metabolism of butylated hydroxytoluene by hepatic and pulmonary microsomes from rats and mice.
    Thompson JA; Malkinson AM; Wand MD; Mastovich SL; Mead EW; Schullek KM; Laudenschlager WG
    Drug Metab Dispos; 1987; 15(6):833-40. PubMed ID: 2893710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oxidative metabolism of hydralazine by rat liver microsomes.
    LaCagnin LB; Colby HD; O'Donnell JP
    Drug Metab Dispos; 1986; 14(5):549-54. PubMed ID: 2876860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase I metabolism of ganstigmine. Rat, dog, monkey and human liver microsomal extracts investigated by liquid chromatography electrospray tandem mass spectrometry.
    Catinella S; Pelizzi N; Puccini P; Marchetti S; Zanol M; Acerbi D; Ventura P
    J Mass Spectrom; 2001 Dec; 36(12):1287-93. PubMed ID: 11754120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The formation of procainamide hydroxylamine by rat and human liver microsomes.
    Budinsky RA; Roberts SM; Coats EA; Adams L; Hess EV
    Drug Metab Dispos; 1987; 15(1):37-43. PubMed ID: 2881757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Porcine FAD-containing monooxygenase metabolizes lidocaine, bupivacaine and propranolol in vitro.
    Wu RF; Liao CX; Tomita S; Ichikawa Y; Terada LS
    Life Sci; 2004 Jul; 75(8):1011-9. PubMed ID: 15193961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of clonidine on lidocaine metabolism in human or rat liver microsomes.
    Inomata S; Nagashima A; Osaka Y; Tanaka E; Toyooka H
    J Anesth; 2003; 17(4):281-3. PubMed ID: 14625719
    [No Abstract]   [Full Text] [Related]  

  • 17. Simultaneous quantitation of lidocaine and its four metabolites by high-performance liquid chromatography: application to studies on in vitro and in vivo metabolism of lidocaine in rats.
    Kawai R; Fujita S; Suzuki T
    J Pharm Sci; 1985 Nov; 74(11):1219-24. PubMed ID: 4087184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural elucidation of hydroxylated metabolites of the isoflavan equol by gas chromatography-mass spectrometry and high-performance liquid chromatography-mass spectrometry.
    Rüfer CE; Glatt H; Kulling SE
    Drug Metab Dispos; 2006 Jan; 34(1):51-60. PubMed ID: 16199471
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precursor-metabolite interaction in the metabolism of lidocaine.
    Suzuki T; Fujita S; Kawai R
    J Pharm Sci; 1984 Jan; 73(1):136-8. PubMed ID: 6694073
    [No Abstract]   [Full Text] [Related]  

  • 20. Isolation and identification of a novel isomerized epoxide metabolite of FK-506 from erythromycin-induced rabbit liver microsomes.
    Lhoëst G; Maton N; Verbeeck RK
    Drug Metab Dispos; 1993; 21(5):850-4. PubMed ID: 7694828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.