These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 28709208)

  • 21. Amplitude and phase dynamics in oscillators with distributed-delay coupling.
    Kyrychko YN; Blyuss KB; Schöll E
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120466. PubMed ID: 23960224
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Solitary pulses in linearly coupled Ginzburg-Landau equations.
    Malomed BA
    Chaos; 2007 Sep; 17(3):037117. PubMed ID: 17903024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synchronization in nonidentical complex Ginzburg-Landau equations.
    Zhou CT
    Chaos; 2006 Mar; 16(1):013124. PubMed ID: 16599755
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulational instability and unstable patterns in the discrete complex cubic Ginzburg-Landau equation with first and second neighbor couplings.
    Mohamadou A; Jiotsa AK; Kofané TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036220. PubMed ID: 16241561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oscillation quenching in third order phase locked loop coupled by mean field diffusive coupling.
    Chakraborty S; Dandapathak M; Sarkar BC
    Chaos; 2016 Nov; 26(11):113106. PubMed ID: 27908013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topology-free design for amplitude death in time-delayed oscillators coupled by a delayed connection.
    Le LB; Konishi K; Hara N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042908. PubMed ID: 23679490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonequilibrium dynamics of the complex Ginzburg-Landau equation: numerical results in two and three dimensions.
    Das SK; Puri S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046123. PubMed ID: 12005942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The study of amplitude death in globally delay-coupled nonidentical systems based on order parameter expansion.
    Yao C; Zou W; Zhao Q
    Chaos; 2012 Jun; 22(2):023149. PubMed ID: 22757556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stability criterion for dissipative soliton solutions of the one-, two-, and three-dimensional complex cubic-quintic Ginzburg-Landau equations.
    Skarka V; Aleksić NB
    Phys Rev Lett; 2006 Jan; 96(1):013903. PubMed ID: 16486455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamical effects of integrative time-delay coupling.
    Saxena G; Prasad A; Ramaswamy R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):017201. PubMed ID: 20866761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Instability criteria and pattern formation in the complex Ginzburg-Landau equation with higher-order terms.
    Mohamadou A; Ayissi BE; Kofané TC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 2):046604. PubMed ID: 17155189
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Amplitude death in networks of delay-coupled delay oscillators.
    Höfener JM; Sethia GC; Gross T
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120462. PubMed ID: 23960220
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field.
    Fujisaka H; Tutu H; Rikvold PA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036109. PubMed ID: 11308711
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal chaos control with a target wave in the complex Ginzburg-Landau equation system.
    Jiang M; Wang X; Ouyang Q; Zhang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056202. PubMed ID: 15244899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Conversion of stability in systems close to a Hopf bifurcation by time-delayed coupling.
    Choe CU; Flunkert V; Hövel P; Benner H; Schöll E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046206. PubMed ID: 17500977
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amplitude suppression of oscillators with delay connections and slow switching topology.
    Iwamoto T; Sugitani Y; Masamura S; Konishi K; Hara N
    Phys Rev E; 2020 Sep; 102(3-1):032206. PubMed ID: 33076019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amplitude death in the absence of time delays in identical coupled oscillators.
    Karnatak R; Ramaswamy R; Prasad A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 2):035201. PubMed ID: 17930293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reduction theories elucidate the origins of complex biological rhythms generated by interacting delay-induced oscillations.
    Yamaguchi I; Ogawa Y; Jimbo Y; Nakao H; Kotani K
    PLoS One; 2011; 6(11):e26497. PubMed ID: 22087228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Class of compound dissipative solitons as a result of collisions in one and two spatial dimensions.
    Descalzi O; Brand HR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):020901. PubMed ID: 25215679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new mechanochemical model: coupled Ginzburg-Landau and Swift-Hohenberg equations in biological patterns of marine animals.
    Morales MA; Rojas JF; Oliveros J; Hernández S AA
    J Theor Biol; 2015 Mar; 368():37-54. PubMed ID: 25534206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.