These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 28709265)
1. From synchronous to one-time delayed dynamics in coupled maps. Anteneodo C; González-Avella JC; Vallejos RO Phys Rev E; 2017 Jun; 95(6-1):062213. PubMed ID: 28709265 [TBL] [Abstract][Full Text] [Related]
2. Delay-induced synchronization phenomena in an array of globally coupled logistic maps. Martí AC; Masoller C Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056219. PubMed ID: 12786262 [TBL] [Abstract][Full Text] [Related]
3. Synchronized family dynamics in globally coupled maps. Balmforth NJ; Jacobson A; Provenzale A Chaos; 1999 Sep; 9(3):738-754. PubMed ID: 12779870 [TBL] [Abstract][Full Text] [Related]
4. Synchronous slowing down in coupled logistic maps via random network topology. Wang SJ; Du RH; Jin T; Wu XS; Qu SX Sci Rep; 2016 Mar; 6():23448. PubMed ID: 27021897 [TBL] [Abstract][Full Text] [Related]
5. Synchronization in driven versus autonomous coupled chaotic maps. Pineda M; Cosenza MG Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):057201. PubMed ID: 16089699 [TBL] [Abstract][Full Text] [Related]
6. Synchronized states and multistability in a random network of coupled discontinuous maps. Nag M; Poria S Chaos; 2015 Aug; 25(8):083114. PubMed ID: 26328565 [TBL] [Abstract][Full Text] [Related]
7. Bifurcation behaviors of synchronized regions in logistic map networks with coupling delay. Tang L; Wu X; Lü J; Lu JA Chaos; 2015 Mar; 25(3):033101. PubMed ID: 25833423 [TBL] [Abstract][Full Text] [Related]
8. Loss of coherence in a system of globally coupled maps. Popovych O; Maistrenko Y; Mosekilde E Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug; 64(2 Pt 2):026205. PubMed ID: 11497675 [TBL] [Abstract][Full Text] [Related]
9. Stability regions for synchronized τ-periodic orbits of coupled maps with coupling delay τ. Karabacak Ö; Alikoç B; Atay FM Chaos; 2016 Sep; 26(9):093101. PubMed ID: 27781450 [TBL] [Abstract][Full Text] [Related]
10. Synchronization in area-preserving maps: Effects of mixed phase space and coherent structures. Mahata S; Das S; Gupte N Phys Rev E; 2016 Jun; 93(6):062212. PubMed ID: 27415260 [TBL] [Abstract][Full Text] [Related]
11. Phase synchronization of two-dimensional lattices of coupled chaotic maps. Hu B; Liu Z Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2114-8. PubMed ID: 11088677 [TBL] [Abstract][Full Text] [Related]
12. Phase-locking swallows in coupled oscillators with delayed feedback. Popovych OV; Krachkovskyi V; Tass PA Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046203. PubMed ID: 21230361 [TBL] [Abstract][Full Text] [Related]
13. Complete chaotic synchronization and exclusion of mutual Pyragas control in two delay-coupled Rössler-type oscillators. Jüngling T; Benner H; Shirahama H; Fukushima K Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056208. PubMed ID: 22181485 [TBL] [Abstract][Full Text] [Related]
15. Relay and complete synchronization in heterogeneous multiplex networks of chaotic maps. Rybalova E; Strelkova G; Schöll E; Anishchenko V Chaos; 2020 Jun; 30(6):061104. PubMed ID: 32611120 [TBL] [Abstract][Full Text] [Related]
16. Random delays and the synchronization of chaotic maps. Masoller C; Martí AC Phys Rev Lett; 2005 Apr; 94(13):134102. PubMed ID: 15903993 [TBL] [Abstract][Full Text] [Related]
17. Desynchronization of chaos in coupled logistic maps. Maistrenko YL; Maistrenko VL; Popovych O; Mosekilde E Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2817-30. PubMed ID: 11970087 [TBL] [Abstract][Full Text] [Related]
18. Transcritical riddling in a system of coupled maps. Popovych O; Maistrenko Y; Mosekilde E; Pikovsky A; Kurths J Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Mar; 63(3 Pt 2):036201. PubMed ID: 11308735 [TBL] [Abstract][Full Text] [Related]
19. Effects of time delay on the synchronized states of globally coupled network. Nag M; Poria S Chaos; 2020 Sep; 30(9):093122. PubMed ID: 33003923 [TBL] [Abstract][Full Text] [Related]
20. Normally attracting manifolds and periodic behavior in one-dimensional and two-dimensional coupled map lattices. Giberti C; Vernia C Chaos; 1994 Dec; 4(4):651-663. PubMed ID: 12780142 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]