These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 28709269)

  • 1. Sparse modeling approach to analytical continuation of imaginary-time quantum Monte Carlo data.
    Otsuki J; Ohzeki M; Shinaoka H; Yoshimi K
    Phys Rev E; 2017 Jun; 95(6-1):061302. PubMed ID: 28709269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytic continuation of quantum Monte Carlo data by stochastic analytical inference.
    Fuchs S; Pruschke T; Jarrell M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):056701. PubMed ID: 20866348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-time quantum Monte Carlo and maximum entropy approach to an imaginary-time formulation of strongly correlated steady-state transport.
    Dirks A; Werner P; Jarrell M; Pruschke T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026701. PubMed ID: 20866934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Neural Network Approach to the Analytic Continuation Problem.
    Fournier R; Wang L; Yazyev OV; Wu Q
    Phys Rev Lett; 2020 Feb; 124(5):056401. PubMed ID: 32083907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analytic continuation average spectrum method for quantum liquids.
    Reichman DR; Rabani E
    J Chem Phys; 2009 Aug; 131(5):054502. PubMed ID: 19673569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computation of Dynamic Polarizabilities and van der Waals Coefficients from Path-Integral Monte Carlo.
    Tiihonen J; Kylänpää I; Rantala TT
    J Chem Theory Comput; 2018 Nov; 14(11):5750-5763. PubMed ID: 30278124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frequency-Dependent Diffusion Constant of Quantum Fluids from Path Integral Monte Carlo and Tikhonov's Regularizing Functional.
    Kowalczyk P; Gauden PA; Terzyk AP; Furmaniak S
    J Chem Theory Comput; 2009 Aug; 5(8):1990-6. PubMed ID: 26613142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reconstruction of electron spectra from depth doses with adaptive regularization.
    Wei J; Sandison GA; Chvetsov AV
    Med Phys; 2006 Feb; 33(2):354-9. PubMed ID: 16532940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constrained sampling method for analytic continuation.
    Sandvik AW
    Phys Rev E; 2016 Dec; 94(6-1):063308. PubMed ID: 28085381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An improved physics-based approach for unfolding megavoltage bremsstrahlung spectra using transmission analysis.
    Ali ES; Rogers DW
    Med Phys; 2012 Mar; 39(3):1663-75. PubMed ID: 22380398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified sparse regularization for electrical impedance tomography.
    Fan W; Wang H; Xue Q; Cui Z; Sun B; Wang Q
    Rev Sci Instrum; 2016 Mar; 87(3):034702. PubMed ID: 27036798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstruction of electron spectra using singular component decomposition.
    Chvetsov AV; Sandison GA
    Med Phys; 2002 Apr; 29(4):578-91. PubMed ID: 11991130
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analytical continuation approaches to electronic transport: the resonant level model.
    Wilner EY; Levy TJ; Rabani E
    J Chem Phys; 2012 Dec; 137(21):214107. PubMed ID: 23231217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Krylov-Projected Quantum Monte Carlo Method.
    Blunt NS; Alavi A; Booth GH
    Phys Rev Lett; 2015 Jul; 115(5):050603. PubMed ID: 26274406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermion sign problem in imaginary-time projection continuum quantum Monte Carlo with local interaction.
    Calcavecchia F; Holzmann M
    Phys Rev E; 2016 Apr; 93():043321. PubMed ID: 27176442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Communication: Excited states, dynamic correlation functions and spectral properties from full configuration interaction quantum Monte Carlo.
    Booth GH; Chan GK
    J Chem Phys; 2012 Nov; 137(19):191102. PubMed ID: 23181287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parameter-free differential evolution algorithm for the analytic continuation of imaginary time correlation functions.
    Nichols NS; Sokol P; Del Maestro A
    Phys Rev E; 2022 Aug; 106(2-2):025312. PubMed ID: 36109945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum Monte Carlo estimation of complex-time correlations for the study of the ground-state dynamic structure function.
    Rota R; Casulleras J; Mazzanti F; Boronat J
    J Chem Phys; 2015 Mar; 142(11):114114. PubMed ID: 25796238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-order path-integral Monte Carlo methods for solving quantum dot problems.
    Chin SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):031301. PubMed ID: 25871047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green's function Monte Carlo method with exact imaginary-time propagation.
    Schmidt KE; Niyaz P; Vaught A; Lee MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016707. PubMed ID: 15697764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.