These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28709271)

  • 1. Multicritical points and topology-induced inverse transition in the random-field Blume-Capel model in a random network.
    Erichsen R; Lopes AA; Magalhaes SG
    Phys Rev E; 2017 Jun; 95(6-1):062113. PubMed ID: 28709271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multicritical points and crossover mediating the strong violation of universality: Wang-Landau determinations in the random-bond d=2 Blume-Capel model.
    Malakis A; Berker AN; Hadjiagapiou IA; Fytas NG; Papakonstantinou T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041113. PubMed ID: 20481683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse melting and inverse freezing in a three-state spin-glass model with finite connectivity.
    Erichsen R; Theumann WK; Magalhaes SG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012139. PubMed ID: 23410315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inverse transitions and disappearance of the λ-line in the asymmetric random-field Ising and Blume-Capel models.
    Das S; Sumedha
    Phys Rev E; 2023 Oct; 108(4):L042101. PubMed ID: 37978665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo study of the triangular Blume-Capel model under bond randomness.
    Theodorakis PE; Fytas NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011140. PubMed ID: 23005401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic phase transitions in the presence of quenched randomness.
    Vatansever E; Fytas NG
    Phys Rev E; 2018 Jun; 97(6-1):062146. PubMed ID: 30011603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong violation of critical phenomena universality: Wang-Landau study of the two-dimensional Blume-Capel model under bond randomness.
    Malakis A; Berker AN; Hadjiagapiou IA; Fytas NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011125. PubMed ID: 19257019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inverse melting and inverse freezing: a spin model.
    Schupper N; Shnerb NM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046107. PubMed ID: 16383468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic first order transition and inverse freezing in a 3D spin glass.
    Paoluzzi M; Leuzzi L; Crisanti A
    Phys Rev Lett; 2010 Mar; 104(12):120602. PubMed ID: 20366522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ising universality in the two-dimensional Blume-Capel model with quenched random crystal field.
    Vatansever E; Vatansever ZD; Theodorakis PE; Fytas NG
    Phys Rev E; 2020 Dec; 102(6-1):062138. PubMed ID: 33466068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of the Blume-Capel model with quenched diluted single-ion anisotropy in the neighborhood of equilibrium states.
    Gulpinar G; Iyikanat F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041101. PubMed ID: 21599109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universality aspects of the d = 3 random-bond Blume-Capel model.
    Malakis A; Berker AN; Fytas NG; Papakonstantinou T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061106. PubMed ID: 23005050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Critical behavior of the spin-1 Blume-Capel model on two-dimensional Voronoi-Delaunay random lattices.
    Fernandes FP; de Albuquerque DF; Lima FW; Plascak JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022144. PubMed ID: 26382380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homogeneous and inhomogeneous phase transitions in the Blume-Capel model with random bonds.
    Wu XT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):010101. PubMed ID: 20866549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-order phase transition and tricritical scaling behavior of the Blume-Capel model: A Wang-Landau sampling approach.
    Kwak W; Jeong J; Lee J; Kim DH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022134. PubMed ID: 26382370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavior of damage spreading in the two-dimensional Blume-Capel model.
    Liu CJ; Schüttler HB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056103. PubMed ID: 12059643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo study of the interfacial adsorption of the Blume-Capel model.
    Fytas NG; Mainou A; Theodorakis PE; Malakis A
    Phys Rev E; 2019 Jan; 99(1-1):012111. PubMed ID: 30780297
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emergence of a bicritical end point in the random-crystal-field Blume-Capel model.
    Sumedha ; Mukherjee S
    Phys Rev E; 2020 Apr; 101(4-1):042125. PubMed ID: 32422747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multicritical behavior in a random-field Ising model under a continuous-field probability distribution.
    Salmon OR; Crokidakis N; Nobre FD
    J Phys Condens Matter; 2009 Feb; 21(5):056005. PubMed ID: 21817311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-order phase transition and phase coexistence in a spin-glass model.
    Crisanti A; Leuzzi L
    Phys Rev Lett; 2002 Dec; 89(23):237204. PubMed ID: 12485037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.