These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 28709298)

  • 1. Direct numerical simulation study of statistically stationary propagation of a reaction wave in homogeneous turbulence.
    Yu R; Lipatnikov AN
    Phys Rev E; 2017 Jun; 95(6-1):063101. PubMed ID: 28709298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smallest scale of wrinkles of a Huygens front in extremely strong turbulence.
    Sabelnikov VA; Lipatnikov AN; Troshin AI
    Phys Rev E; 2021 Oct; 104(4-2):045101. PubMed ID: 34781572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.
    Elperin T; Kleeorin N; Liberman M; Lipatnikov AN; Rogachevskii I; Yu R
    Phys Rev E; 2017 Nov; 96(5-1):053111. PubMed ID: 29347758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction front propagation in a turbulent flow.
    Koudella CR; Neufeld Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026307. PubMed ID: 15447588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A DNS Study of Closure Relations for Convection Flux Term in Transport Equation for Mean Reaction Rate in Turbulent Flow.
    Lipatnikov AN; Sabelnikov VA; Chakraborty N; Nishiki S; Hasegawa T
    Flow Turbul Combust; 2018; 100(1):75-92. PubMed ID: 30069139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct numerical simulations of capillary wave turbulence.
    Deike L; Fuster D; Berhanu M; Falcon E
    Phys Rev Lett; 2014 Jun; 112(23):234501. PubMed ID: 24972211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct numerical simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives.
    Perlekar P; Mitra D; Pandit R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066313. PubMed ID: 21230740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two-dimensional Turbulence in Symmetric Binary-Fluid Mixtures: Coarsening Arrest by the Inverse Cascade.
    Perlekar P; Pal N; Pandit R
    Sci Rep; 2017 Mar; 7():44589. PubMed ID: 28322219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unsteady turbulence cascades.
    Goto S; Vassilicos JC
    Phys Rev E; 2016 Nov; 94(5-1):053108. PubMed ID: 27967192
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct-numerical-simulation-based measurement of the mean impulse response of homogeneous isotropic turbulence.
    Carini M; Quadrio M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 2):066301. PubMed ID: 21230728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage.
    Sengupta TK; Bhaumik S; Bhumkar YG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026308. PubMed ID: 22463318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stationarity of linearly forced turbulence in finite domains.
    Gravanis E; Akylas E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046312. PubMed ID: 22181266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling properties of particle density fields formed in simulated turbulent flows.
    Hogan RC; Cuzzi JN; Dobrovolskis AR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Aug; 60(2 Pt B):1674-80. PubMed ID: 11969949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reynolds number scaling of velocity increments in isotropic turbulence.
    Iyer KP; Sreenivasan KR; Yeung PK
    Phys Rev E; 2017 Feb; 95(2-1):021101. PubMed ID: 28297886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal velocity-velocity correlation function in fully developed turbulence.
    Canet L; Rossetto V; Wschebor N; Balarac G
    Phys Rev E; 2017 Feb; 95(2-1):023107. PubMed ID: 28297914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of Hill's optical turbulence model by means of direct numerical simulation.
    Muschinski A; de Bruyn Kops SM
    J Opt Soc Am A Opt Image Sci Vis; 2015 Dec; 32(12):2423-30. PubMed ID: 26831396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration of small eddies by data assimilation in turbulence.
    Yoshida K; Yamaguchi J; Kaneda Y
    Phys Rev Lett; 2005 Jan; 94(1):014501. PubMed ID: 15698086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite flame thickness effects on Kolmogorov-Petrovsky-Piskunov turbulent burning velocities.
    Somappa S; Acharya V; Lieuwen T
    Phys Rev E; 2022 Nov; 106(5-2):055107. PubMed ID: 36559363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scale dependence of multiplier distributions for particle concentration, enstrophy, and dissipation in the inertial range of homogeneous turbulence.
    Hartlep T; Cuzzi JN; Weston B
    Phys Rev E; 2017 Mar; 95(3-1):033115. PubMed ID: 28415324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverse energy cascade in three-dimensional isotropic turbulence.
    Biferale L; Musacchio S; Toschi F
    Phys Rev Lett; 2012 Apr; 108(16):164501. PubMed ID: 22680722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.