These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 28709301)
1. Criteria for drop generation in multiphase microfluidic devices. Buttacci JD; Loewenberg M; Roberts CC; Nemer MB; Rao RR Phys Rev E; 2017 Jun; 95(6-1):063103. PubMed ID: 28709301 [TBL] [Abstract][Full Text] [Related]
2. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
3. Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces. Roberts CC; Rao RR; Loewenberg M; Brooks CF; Galambos P; Grillet AM; Nemer MB Lab Chip; 2012 Apr; 12(8):1540-7. PubMed ID: 22398953 [TBL] [Abstract][Full Text] [Related]
4. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Christopher GF; Noharuddin NN; Taylor JA; Anna SL Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153 [TBL] [Abstract][Full Text] [Related]
5. Experimental study on dynamic interfacial tension with mixture of SDS-PEG as surfactants in a coflowing microfluidic device. Tostado CP; Xu JH; Du AW; Luo GS Langmuir; 2012 Feb; 28(6):3120-8. PubMed ID: 22250701 [TBL] [Abstract][Full Text] [Related]
6. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification. Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740 [TBL] [Abstract][Full Text] [Related]
7. Drop formation in non-planar microfluidic devices. Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475 [TBL] [Abstract][Full Text] [Related]
8. Suppression of instabilities in multiphase flow by geometric confinement. Humphry KJ; Ajdari A; Fernández-Nieves A; Stone HA; Weitz DA Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056310. PubMed ID: 19518565 [TBL] [Abstract][Full Text] [Related]
9. Glass capillary microfluidics for production of monodispersed poly (DL-lactic acid) and polycaprolactone microparticles: experiments and numerical simulations. Vladisavljević GT; Shahmohamadi H; Das DB; Ekanem EE; Tauanov Z; Sharma L J Colloid Interface Sci; 2014 Mar; 418():163-70. PubMed ID: 24461831 [TBL] [Abstract][Full Text] [Related]
10. Evidence for the existence of an effective interfacial tension between miscible fluids: isobutyric acid-water and 1-butanol-water in a spinning-drop tensiometer. Pojman JA; Whitmore C; Turco Liveri ML; Lombardo R; Marszalek J; Parker R; Zoltowski B Langmuir; 2006 Mar; 22(6):2569-77. PubMed ID: 16519456 [TBL] [Abstract][Full Text] [Related]
12. Experimental validation of plugging during drop formation in a T-junction. Abate AR; Mary P; van Steijn V; Weitz DA Lab Chip; 2012 Apr; 12(8):1516-21. PubMed ID: 22402628 [TBL] [Abstract][Full Text] [Related]
17. Screening of the effect of surface energy of microchannels on microfluidic emulsification. Li W; Nie Z; Zhang H; Paquet C; Seo M; Garstecki P; Kumacheva E Langmuir; 2007 Jul; 23(15):8010-4. PubMed ID: 17583921 [TBL] [Abstract][Full Text] [Related]
18. Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension. Sauret A; Spandagos C; Shum HC Lab Chip; 2012 Sep; 12(18):3380-6. PubMed ID: 22773244 [TBL] [Abstract][Full Text] [Related]
19. Motion of a droplet through microfluidic ratchets. Liu J; Yap YF; Nguyen NT Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046319. PubMed ID: 19905448 [TBL] [Abstract][Full Text] [Related]
20. Stability of a compound sessile drop at the axisymmetric configuration. Zhang Y; Chatain D; Anna SL; Garoff S J Colloid Interface Sci; 2016 Jan; 462():88-99. PubMed ID: 26433481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]