BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 28709527)

  • 1. Removal of Arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose.
    Mosaferi M; Nemati S; Khataee A; Nasseri S; Hashemi AA
    J Environ Health Sci Eng; 2014; 12():74. PubMed ID: 24860660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization, and debromination reactivity of cellulose-stabilized Pd/Fe nanoparticles for 2,2',4,4'-tretrabromodiphenyl ether.
    Huang G; Wang M; Hu Y; Lv S; Li C
    PLoS One; 2017; 12(3):e0174589. PubMed ID: 28355273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High nitrate removal by starch-stabilized Fe
    Rajab Beigy M; Rasekh B; Yazdian F; Aminzadeh B; Shekarriz M
    Eng Life Sci; 2018 Mar; 18(3):187-195. PubMed ID: 32624897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Particle-Scale Understanding of Arsenic Interactions with Sulfidized Nanoscale Zerovalent Iron and Their Impacts on Dehalogenation Reactivity.
    Xu J; Chen C; Hu X; Chen D; Bland G; Wielinski J; Kaegi R; Lin D; Lowry GV
    Environ Sci Technol; 2023 Dec; 57(51):21917-21926. PubMed ID: 38091483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of carboxymethyl cellulose as binder for the production of water-soluble catalysts.
    Paganelli S; Massimi N; Di Michele A; Piccolo O; Rampazzo R; Facchin M; Beghetto V
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132541. PubMed ID: 38777012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel catalytic degradation of Diazinon with ozonation/mg-Al layered double hydroxides: optimization, modeling, and dispersive liquid-liquid microextraction.
    Malakootian M; Shahamat YD; Mahdizadeh H
    J Environ Health Sci Eng; 2021 Dec; 19(2):1299-1311. PubMed ID: 34900267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revolutionizing goat milk gels: A central composite design approach for synthesizing ascorbic acid-functionalized iron oxide nanoparticles decorated alginate-chitosan nanoparticles fortified smart gels.
    Rathee S; Ojha A; Singh KR; Arora VK; Prabhakar PK; Agnihotri S; Chauhan K; Singh J; Shukla S
    Heliyon; 2023 Sep; 9(9):e19890. PubMed ID: 37809974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release Kinetics of Potassium, Calcium, and Iron Cations from Carboxymethyl Cellulose Hydrogels at Different pH Values.
    Qu Y; Haverkamp R; Jin Z; Jakobs-Schönwandt D; Patel AV; Hellweg T
    Chempluschem; 2023 Dec; 88(12):e202300368. PubMed ID: 37881159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient degradation of microcystin-LR by BiVO
    Jafari N; Ebrahimpour K; Abdolahnejad A; Karimi M; Ebrahimi A
    J Environ Health Sci Eng; 2019 Dec; 17(2):1171-1183. PubMed ID: 32030183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data on THMs concentration and spatial trend in water distribution network (a preliminary study in center of Iran).
    Mohammadi A; Ebrahimi AA; Ghanbari R; Faraji M; Nemati S; Abdolahnejad A
    MethodsX; 2019; 6():760-763. PubMed ID: 31011549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of two types of stabilized nano zero-valent iron and transport in porous media.
    Lin YH; Tseng HH; Wey MY; Lin MD
    Sci Total Environ; 2010 Apr; 408(10):2260-7. PubMed ID: 20163828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles.
    Wang Q; Qian H; Yang Y; Zhang Z; Naman C; Xu X
    J Contam Hydrol; 2010 May; 114(1-4):35-42. PubMed ID: 20304518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of artificial intelligence in modeling of nitrate removal process using zero-valent iron nanoparticles-loaded carboxymethyl cellulose.
    Sepehri S; Javadi Moghaddam J; Abdoli S; Asgari Lajayer B; Shu W; Price GW
    Environ Geochem Health; 2024 Jun; 46(8):262. PubMed ID: 38926193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of As(III) in soil and groundwater using a new class of polysaccharide stabilized Fe-Mn oxide nanoparticles.
    An B; Zhao D
    J Hazard Mater; 2012 Apr; 211-212():332-41. PubMed ID: 22119304
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behavior, remediation effect and toxicity of nanomaterials in water environments.
    Zhu Y; Liu X; Hu Y; Wang R; Chen M; Wu J; Wang Y; Kang S; Sun Y; Zhu M
    Environ Res; 2019 Jul; 174():54-60. PubMed ID: 31029942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applications of Green Synthesized Nanomaterials in Water Remediation.
    Singh NB; B H Susan MA; Guin M
    Curr Pharm Biotechnol; 2021; 22(6):733-761. PubMed ID: 33109041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the capability of carboxymethyl cellulose-stabilized iron nanoparticles for the remediation of arsenite from water using the response surface methodology (RSM) model: Modeling and optimization.
    Mohammadi A; Nemati S; Mosaferi M; Abdollahnejhad A; Almasian M; Sheikhmohammadi A
    J Contam Hydrol; 2017 Aug; 203():85-92. PubMed ID: 28709527
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.