BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 28709726)

  • 1. Induction and maintenance of regulatory T cells by transcription factors and epigenetic modifications.
    Iizuka-Koga M; Nakatsukasa H; Ito M; Akanuma T; Lu Q; Yoshimura A
    J Autoimmun; 2017 Sep; 83():113-121. PubMed ID: 28709726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Functional Modulation of Regulatory T Cells by Transcription Factors and Epigenetics.
    Ito M; Iizuka-Koga M; Ando M; Yoshimura A
    Cornea; 2018 Nov; 37 Suppl 1():S42-S49. PubMed ID: 30211750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of transcription factors and epigenetic modifications in differentiation and maintenance of regulatory T cells.
    Sekiya T; Nakatsukasa H; Lu Q; Yoshimura A
    Microbes Infect; 2016 Jun; 18(6):378-386. PubMed ID: 26970203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cutting Edge: CRISPR-Based Transcriptional Regulators Reveal Transcription-Dependent Establishment of Epigenetic Memory of
    Cameron J; Martino P; Nguyen L; Li X
    J Immunol; 2020 Dec; 205(11):2953-2958. PubMed ID: 33139491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of regulatory T cells: epigenetics and plasticity.
    Okada M; Hibino S; Someya K; Yoshmura A
    Adv Immunol; 2014; 124():249-73. PubMed ID: 25175778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
    Okada M; Kanamori M; Someya K; Nakatsukasa H; Yoshimura A
    Epigenetics Chromatin; 2017; 10():24. PubMed ID: 28503202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vitamin C Facilitates Demethylation of the Foxp3 Enhancer in a Tet-Dependent Manner.
    Sasidharan Nair V; Song MH; Oh KI
    J Immunol; 2016 Mar; 196(5):2119-31. PubMed ID: 26826239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Active demethylation of the Foxp3 locus leads to the generation of stable regulatory T cells within the thymus.
    Toker A; Engelbert D; Garg G; Polansky JK; Floess S; Miyao T; Baron U; Düber S; Geffers R; Giehr P; Schallenberg S; Kretschmer K; Olek S; Walter J; Weiss S; Hori S; Hamann A; Huehn J
    J Immunol; 2013 Apr; 190(7):3180-8. PubMed ID: 23420886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique properties of thymic antigen-presenting cells promote epigenetic imprinting of alloantigen-specific regulatory T cells.
    Garg G; Nikolouli E; Hardtke-Wolenski M; Toker A; Ohkura N; Beckstette M; Miyao T; Geffers R; Floess S; Gerdes N; Lutgens E; Osterloh A; Hori S; Sakaguchi S; Jaeckel E; Huehn J
    Oncotarget; 2017 May; 8(22):35542-35557. PubMed ID: 28415767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of Foxp3 stability through CNS2 demethylation by TET enzyme induction and activation.
    Someya K; Nakatsukasa H; Ito M; Kondo T; Tateda KI; Akanuma T; Koya I; Sanosaka T; Kohyama J; Tsukada YI; Takamura-Enya T; Yoshimura A
    Int Immunol; 2017 Aug; 29(8):365-375. PubMed ID: 29048538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methylation of FOXP3 in regulatory T cells is related to the severity of coronary artery disease.
    Jia L; Zhu L; Wang JZ; Wang XJ; Chen JZ; Song L; Wu YJ; Sun K; Yuan ZY; Hui R
    Atherosclerosis; 2013 Jun; 228(2):346-52. PubMed ID: 23566804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peripherally induced Treg: mode, stability, and role in specific tolerance.
    Apostolou I; Verginis P; Kretschmer K; Polansky J; Hühn J; von Boehmer H
    J Clin Immunol; 2008 Nov; 28(6):619-24. PubMed ID: 18841451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic control of the foxp3 locus in regulatory T cells.
    Floess S; Freyer J; Siewert C; Baron U; Olek S; Polansky J; Schlawe K; Chang HD; Bopp T; Schmitt E; Klein-Hessling S; Serfling E; Hamann A; Huehn J
    PLoS Biol; 2007 Feb; 5(2):e38. PubMed ID: 17298177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced Regulatory T Cells: Their Development, Stability, and Applications.
    Kanamori M; Nakatsukasa H; Okada M; Lu Q; Yoshimura A
    Trends Immunol; 2016 Nov; 37(11):803-811. PubMed ID: 27623114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epigenetic mechanisms of regulation of Foxp3 expression.
    Lal G; Bromberg JS
    Blood; 2009 Oct; 114(18):3727-35. PubMed ID: 19641188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic control of thymic Treg-cell development.
    Kitagawa Y; Ohkura N; Sakaguchi S
    Eur J Immunol; 2015 Jan; 45(1):11-6. PubMed ID: 25348287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FOXP3 promoter demethylation reveals the committed Treg population in humans.
    Janson PC; Winerdal ME; Marits P; Thörn M; Ohlsson R; Winqvist O
    PLoS One; 2008 Feb; 3(2):e1612. PubMed ID: 18286169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic and epigenetic basis of Treg cell development and function: from a FoxP3-centered view to an epigenome-defined view of natural Treg cells.
    Morikawa H; Sakaguchi S
    Immunol Rev; 2014 May; 259(1):192-205. PubMed ID: 24712467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Molecular Control of Regulatory T Cell Induction.
    van Nieuwenhuijze A; Liston A
    Prog Mol Biol Transl Sci; 2015; 136():69-97. PubMed ID: 26615093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Imprinting of the Treg Cell-Specific Epigenetic Signature in Developing Thymic Regulatory T Cells.
    Herppich S; Toker A; Pietzsch B; Kitagawa Y; Ohkura N; Miyao T; Floess S; Hori S; Sakaguchi S; Huehn J
    Front Immunol; 2019; 10():2382. PubMed ID: 31681278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.