BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 28709732)

  • 1. Medial geniculate neurons show diverse effects in response to electrical stimulation of prefrontal cortex.
    Barry KM; Robertson D; Mulders WHAM
    Hear Res; 2017 Sep; 353():204-212. PubMed ID: 28709732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of medial geniculate nucleus neuronal activity by electrical stimulation of the nucleus accumbens.
    Barry KM; Paolini AG; Robertson D; Mulders WH
    Neuroscience; 2015 Nov; 308():1-10. PubMed ID: 26349008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in Prefrontal Cortex-Thalamic Circuitry after Acoustic Trauma.
    Barry KM; Robertson D; Mulders WHAM
    Biomedicines; 2021 Jan; 9(1):. PubMed ID: 33466899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hearing Loss Increases Inhibitory Effects of Prefrontal Cortex Stimulation on Sound Evoked Activity in Medial Geniculate Nucleus.
    De Vis C; Barry KM; Mulders WHAM
    Front Synaptic Neurosci; 2022; 14():840368. PubMed ID: 35300310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in auditory thalamus neural firing patterns after acoustic trauma in rats.
    Barry KM; Robertson D; Mulders WHAM
    Hear Res; 2019 Aug; 379():89-97. PubMed ID: 31108284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-intensity repetitive transcranial magnetic stimulation over prefrontal cortex in an animal model alters activity in the auditory thalamus but does not affect behavioural measures of tinnitus.
    Mulders WHAM; Leggett K; Mendis V; Tarawneh H; Wong JK; Rodger J
    Exp Brain Res; 2019 Apr; 237(4):883-896. PubMed ID: 30649586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound-induced changes of infraslow brain potential fluctuations in the medial geniculate nucleus and primary auditory cortex in anaesthetized rats.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2007 Feb; 1133(1):78-86. PubMed ID: 17196561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous firing patterns in the medial geniculate nucleus in a guinea pig model of tinnitus.
    Cook JA; Barry KM; Zimdahl JW; Leggett K; Mulders WHAM
    Hear Res; 2021 Apr; 403():108190. PubMed ID: 33556774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acoustic trauma increases inhibitory effects of amygdala electrical stimulation on thalamic neurons in a rat model.
    Zimdahl JW; Rodger J; Mulders WHAM
    Hear Res; 2023 Nov; 439():108891. PubMed ID: 37797476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opposite effects of tetanic stimulation of the auditory thalamus or auditory cortex on the acoustic startle reflex in awake rats.
    Huang J; Wu X; Yeomans J; Li L
    Eur J Neurosci; 2005 Apr; 21(7):1943-56. PubMed ID: 15869487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamics of infraslow potentials in the primary auditory cortex: component analysis and contribution of specific thalamic-cortical and non-specific brainstem-cortical influences.
    Filippov IV; Williams WC; Krebs AA; Pugachev KS
    Brain Res; 2008 Jul; 1219():66-77. PubMed ID: 18534565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust interactions between the effects of auditory and cutaneous electrical stimulations on cell activities in the thalamic reticular nucleus.
    Kimura A
    Brain Res; 2017 Apr; 1661():49-66. PubMed ID: 28202254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Brainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus.
    Angelucci A; Clascá F; Sur M
    J Comp Neurol; 1998 Oct; 400(3):417-39. PubMed ID: 9779945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corticofugal modulation on both ON and OFF responses in the nonlemniscal auditory thalamus of the guinea pig.
    He J
    J Neurophysiol; 2003 Jan; 89(1):367-81. PubMed ID: 12522186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of salicylate application on the spontaneous activity in brain slices of the mouse cochlear nucleus, medial geniculate body and primary auditory cortex.
    Basta D; Goetze R; Ernst A
    Hear Res; 2008 Jun; 240(1-2):42-51. PubMed ID: 18372130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noise-induced neurophysiological alterations in the rat medial geniculate body and thalamocortical desynchronization by deep brain stimulation.
    van Zwieten G; Roberts MJ; Schaper FLVW; Smit JV; Temel Y; Janssen MLF
    J Neurophysiol; 2021 Feb; 125(2):661-671. PubMed ID: 33405997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auditory cortex stimulation to suppress tinnitus: mechanisms and strategies.
    Zhang J
    Hear Res; 2013 Jan; 295():38-57. PubMed ID: 22683861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Excitatory Repetitive Transcranial Magnetic Stimulation Over Prefrontal Cortex in a Guinea Pig Model Ameliorates Tinnitus.
    Zimdahl JW; Thomas H; Bolland SJ; Leggett K; Barry KM; Rodger J; Mulders WHAM
    Front Neurosci; 2021; 15():693935. PubMed ID: 34366777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual auditory thalamic reticular neurons have large and cross-modal sources of cortical and thalamic inputs.
    Yu XJ; Meng XK; Xu XX; He J
    Neuroscience; 2011 Oct; 193():122-31. PubMed ID: 21820493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single cell plasticity and population coding stability in auditory thalamus upon associative learning.
    Taylor JA; Hasegawa M; Benoit CM; Freire JA; Theodore M; Ganea DA; Innocenti SM; Lu T; Gründemann J
    Nat Commun; 2021 Apr; 12(1):2438. PubMed ID: 33903596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.