These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28709991)

  • 1. Drugs as habitable planets in the space of dark chemical matter.
    Siramshetty VB; Preissner R
    Drug Discov Today; 2018 Mar; 23(3):481-486. PubMed ID: 28709991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dark chemical matter as a promising starting point for drug lead discovery.
    Wassermann AM; Lounkine E; Hoepfner D; Le Goff G; King FJ; Studer C; Peltier JM; Grippo ML; Prindle V; Tao J; Schuffenhauer A; Wallace IM; Chen S; Krastel P; Cobos-Correa A; Parker CN; Davies JW; Glick M
    Nat Chem Biol; 2015 Dec; 11(12):958-66. PubMed ID: 26479441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuisance Compounds, PAINS Filters, and Dark Chemical Matter in the GSK HTS Collection.
    Chakravorty SJ; Chan J; Greenwood MN; Popa-Burke I; Remlinger KS; Pickett SD; Green DVS; Fillmore MC; Dean TW; Luengo JI; Macarrón R
    SLAS Discov; 2018 Jul; 23(6):532-545. PubMed ID: 29699447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locating sweet spots for screening hits and evaluating pan-assay interference filters from the performance analysis of two lead-like libraries.
    Mok NY; Maxe S; Brenk R
    J Chem Inf Model; 2013 Mar; 53(3):534-44. PubMed ID: 23451880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to Triage PAINS-Full Research.
    Dahlin JL; Walters MA
    Assay Drug Dev Technol; 2016 Apr; 14(3):168-74. PubMed ID: 26496388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deorphanization strategies for dark chemical matter.
    Wassermann AM; Tudor M; Glick M
    Drug Discov Today Technol; 2017 Mar; 23():69-74. PubMed ID: 28647088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How Frequently Are Pan-Assay Interference Compounds Active? Large-Scale Analysis of Screening Data Reveals Diverse Activity Profiles, Low Global Hit Frequency, and Many Consistently Inactive Compounds.
    Jasial S; Hu Y; Bajorath J
    J Med Chem; 2017 May; 60(9):3879-3886. PubMed ID: 28421750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical libraries: How dark is HTS dark matter?
    Macarron R
    Nat Chem Biol; 2015 Dec; 11(12):904-5. PubMed ID: 26479440
    [No Abstract]   [Full Text] [Related]  

  • 9. Analysis of Nuisance Substructures and Aggregators in a Comprehensive Database of Food Chemical Compounds.
    Kaya I; Colmenarejo G
    J Agric Food Chem; 2020 Aug; 68(33):8812-8824. PubMed ID: 32687707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput screening platform for natural product-based drug discovery against 3 neglected tropical diseases: human African trypanosomiasis, leishmaniasis, and Chagas disease.
    Annang F; Pérez-Moreno G; García-Hernández R; Cordon-Obras C; Martín J; Tormo JR; Rodríguez L; de Pedro N; Gómez-Pérez V; Valente M; Reyes F; Genilloud O; Vicente F; Castanys S; Ruiz-Pérez LM; Navarro M; Gamarro F; González-Pacanowska D
    J Biomol Screen; 2015 Jan; 20(1):82-91. PubMed ID: 25332350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference CompoundS.
    Capuzzi SJ; Muratov EN; Tropsha A
    J Chem Inf Model; 2017 Mar; 57(3):417-427. PubMed ID: 28165734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hit Dexter 2.0: Machine-Learning Models for the Prediction of Frequent Hitters.
    Stork C; Chen Y; Šícho M; Kirchmair J
    J Chem Inf Model; 2019 Mar; 59(3):1030-1043. PubMed ID: 30624935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Whole animal HTS of small molecules for antifungal compounds.
    Muhammed M; Arvanitis M; Mylonakis E
    Expert Opin Drug Discov; 2016; 11(2):177-84. PubMed ID: 26593386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring Activity Profiles of PAINS and Their Structural Context in Target-Ligand Complexes.
    Siramshetty VB; Preissner R; Gohlke BO
    J Chem Inf Model; 2018 Sep; 58(9):1847-1857. PubMed ID: 30105913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of high-throughput screening.
    Entzeroth M; Flotow H; Condron P
    Curr Protoc Pharmacol; 2009 Mar; Chapter 9():Unit 9.4. PubMed ID: 22294406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter.
    Jasial S; Gilberg E; Blaschke T; Bajorath J
    J Med Chem; 2018 Nov; 61(22):10255-10264. PubMed ID: 30422657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioprospecting microbial natural product libraries from the marine environment for drug discovery.
    Liu X; Ashforth E; Ren B; Song F; Dai H; Liu M; Wang J; Xie Q; Zhang L
    J Antibiot (Tokyo); 2010 Aug; 63(8):415-22. PubMed ID: 20606699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemically engineered extracts: source of bioactive compounds.
    Ramallo IA; Salazar MO; Mendez L; Furlan RL
    Acc Chem Res; 2011 Apr; 44(4):241-50. PubMed ID: 21355557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of Dark Chemical Matter in High Throughput Screening.
    Muegge I; Mukherjee P
    J Med Chem; 2016 Nov; 59(21):9806-9813. PubMed ID: 27762554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cheminformatics approaches to analyze diversity in compound screening libraries.
    Akella LB; DeCaprio D
    Curr Opin Chem Biol; 2010 Jun; 14(3):325-30. PubMed ID: 20457001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.