These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 2871025)

  • 1. Effect of 5-amino-4-imidazolecarboxamide riboside on renal ammoniagenesis. Study with [15N]aspartate.
    Nissim I; Yudkoff M; Segal S
    J Biol Chem; 1986 May; 261(14):6509-14. PubMed ID: 2871025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of 5-amino-4-imidazolecarboxamide riboside (AICA-riboside) on the purine nucleotide synthesis and growth of rat kidney cells in culture: study with [15N]aspartate.
    Nissim I; Yudkoff M; Nissim I; States B
    J Cell Physiol; 1989 Mar; 138(3):536-40. PubMed ID: 2925797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The purine nucleotide cycle and ammoniagenesis in rat kidney tubules.
    Tornheim K; Pang H; Costello CE
    J Biol Chem; 1986 Aug; 261(22):10157-62. PubMed ID: 2874138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolism of glutamine and glutamate by rat renal tubules. Study with 15N and gas chromatography-mass spectrometry.
    Nissim I; Yudkoff M; Segal S
    J Biol Chem; 1985 Nov; 260(26):13955-67. PubMed ID: 2865260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relative role of the glutaminase, glutamate dehydrogenase, and AMP-deaminase pathways in hepatic ureagenesis: studies with 15N.
    Nissim I; Cattano C; Nissim I; Yudkoff M
    Arch Biochem Biophys; 1992 Feb; 292(2):393-401. PubMed ID: 1346240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside in isolated rat hepatocytes.
    Vincent MF; Bontemps F; Van den Berghe G
    Biochem J; 1992 Jan; 281 ( Pt 1)(Pt 1):267-72. PubMed ID: 1531010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective effects of AICAriboside in the globally ischemic isolated cat heart.
    Mitsos SE; Jolly SR; Lucchesi BR
    Pharmacology; 1985; 31(3):121-31. PubMed ID: 4048260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of purine nucleotide cycle to energy production in skeletal muscle.
    Flanagan WF; Holmes EW; Sabina RL; Swain JL
    Am J Physiol; 1986 Nov; 251(5 Pt 1):C795-802. PubMed ID: 3777158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of the purine nucleotide cycle by inhibition of adenylosuccinate lyase produces skeletal muscle dysfunction.
    Swain JL; Hines JJ; Sabina RL; Harbury OL; Holmes EW
    J Clin Invest; 1984 Oct; 74(4):1422-7. PubMed ID: 6480832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early events in the initiation of ammonia formation in kidney.
    Bogusky RT; Aoki TT
    J Biol Chem; 1983 Mar; 258(5):2795-801. PubMed ID: 6131071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The purine nucleotide cycle and ammonia formation from glutamine by rat kidney slices.
    Strzelecki T; Rogulski J; Angielski S
    Biochem J; 1983 Jun; 212(3):705-11. PubMed ID: 6136272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate cycling between 5-amino-4-imidazolecarboxamide riboside and its monophosphate in isolated rat hepatocytes.
    Vincent MF; Bontemps F; Van den Berghe G
    Biochem Pharmacol; 1996 Oct; 52(7):999-1006. PubMed ID: 8831718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic fate of glutamate carbon in rat renal tubules. Studies with 13C nuclear magnetic resonance and gas chromatography-mass spectrometry.
    Nissim I; Yudkoff M; Segal S
    Biochem J; 1987 Jan; 241(2):361-70. PubMed ID: 2884989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell-type specificity of inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside. Lack of effect in rabbit cardiomyocytes and human erythrocytes, and inhibition in FTO-2B rat hepatoma cells.
    Javaux F; Vincent MF; Wagner DR; van den Berghe G
    Biochem J; 1995 Feb; 305 ( Pt 3)(Pt 3):913-9. PubMed ID: 7848293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5-Aminoimidazole-4-carboxamide riboside induces apoptosis in Jurkat cells, but the AMP-activated protein kinase is not involved.
    López JM; Santidrián AF; Campàs C; Gil J
    Biochem J; 2003 Mar; 370(Pt 3):1027-32. PubMed ID: 12452797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 5-Amino-4-imidazolecarboxamide riboside (Z-riboside) metabolism in eukaryotic cells.
    Sabina RL; Patterson D; Holmes EW
    J Biol Chem; 1985 May; 260(10):6107-14. PubMed ID: 3997815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of amino acid metabolism by cultured rat kidney cells: study with 15N.
    Nissim I; States B; Yudkoff M; Segal S
    Am J Physiol; 1987 Dec; 253(6 Pt 2):F1243-52. PubMed ID: 2892418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ATP precursors on ATP and free ADP content and functional recovery of postischemic hearts.
    Ambrosio G; Jacobus WE; Mitchell MC; Litt MR; Becker LC
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H560-6. PubMed ID: 2916688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of mast cell mediator release by 5-amino-4-imidazolecarboxamide riboside.
    Marquardt DL; Gruber HE
    Biochem Pharmacol; 1986 Dec; 35(24):4415-21. PubMed ID: 2947580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen sources for renal ammoniagenesis: study with 15N amino acid.
    Nissim I; Yudkoff M; Segal S
    Am J Physiol; 1986 Dec; 251(6 Pt 2):F995-1002. PubMed ID: 3789161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.