These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A putative role for amino acid permeases in sink-source communication of barley tissues uncovered by RNA-seq. Kohl S; Hollmann J; Blattner FR; Radchuk V; Andersch F; Steuernagel B; Schmutzer T; Scholz U; Krupinska K; Weber H; Weschke W BMC Plant Biol; 2012 Aug; 12():154. PubMed ID: 22935196 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide survey of the amino acid transporter gene family in wheat (Triticum aestivum L.): Identification, expression analysis and response to abiotic stress. Tian R; Yang Y; Chen M Int J Biol Macromol; 2020 Nov; 162():1372-1387. PubMed ID: 32781128 [TBL] [Abstract][Full Text] [Related]
5. Co-ordinated expression of amino acid metabolism in response to N and S deficiency during wheat grain filling. Howarth JR; Parmar S; Jones J; Shepherd CE; Corol DI; Galster AM; Hawkins ND; Miller SJ; Baker JM; Verrier PJ; Ward JL; Beale MH; Barraclough PB; Hawkesford MJ J Exp Bot; 2008; 59(13):3675-89. PubMed ID: 18791197 [TBL] [Abstract][Full Text] [Related]
6. Tissue specific expression of UMAMIT amino acid transporters in wheat. Fang ZT; Kapoor R; Datta A; Okumoto S Sci Rep; 2022 Jan; 12(1):348. PubMed ID: 35013480 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide analysis of oligopeptide transporters and detailed characterization of yellow stripe transporter genes in hexaploid wheat. Kumar A; Kaur G; Goel P; Bhati KK; Kaur M; Shukla V; Pandey AK Funct Integr Genomics; 2019 Jan; 19(1):75-90. PubMed ID: 30120602 [TBL] [Abstract][Full Text] [Related]
8. Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). Han Z; Liu Y; Deng X; Liu D; Liu Y; Hu Y; Yan Y BMC Genomics; 2019 Feb; 20(1):101. PubMed ID: 30709338 [TBL] [Abstract][Full Text] [Related]
9. Differential expression of three BOR1 genes corresponding to different genomes in response to boron conditions in hexaploid wheat (Triticum aestivum L.). Leaungthitikanchana S; Fujibe T; Tanaka M; Wang S; Sotta N; Takano J; Fujiwara T Plant Cell Physiol; 2013 Jul; 54(7):1056-63. PubMed ID: 23596187 [TBL] [Abstract][Full Text] [Related]
10. Nitrogen topdressing timing modifies free amino acids profiles and storage protein gene expression in wheat grain. Zhong Y; Xu D; Hebelstrup KH; Yang D; Cai J; Wang X; Zhou Q; Cao W; Dai T; Jiang D BMC Plant Biol; 2018 Dec; 18(1):353. PubMed ID: 30545290 [TBL] [Abstract][Full Text] [Related]
11. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway. Hu XJ; Chen D; Lynne Mclntyre C; Fernanda Dreccer M; Zhang ZB; Drenth J; Kalaipandian S; Chang H; Xue GP Plant Cell Environ; 2018 Jan; 41(1):79-98. PubMed ID: 28370204 [TBL] [Abstract][Full Text] [Related]
12. Cloning and characterization of TaMBD6 homeologues encoding methyl-CpG-binding domain proteins in wheat. Shi R; Zhang J; Li J; Wang K; Jia H; Zhang L; Wang P; Yin J; Meng F; Li Y Plant Physiol Biochem; 2016 Dec; 109():1-8. PubMed ID: 27611240 [TBL] [Abstract][Full Text] [Related]
13. A wheat CCAAT box-binding transcription factor increases the grain yield of wheat with less fertilizer input. Qu B; He X; Wang J; Zhao Y; Teng W; Shao A; Zhao X; Ma W; Wang J; Li B; Li Z; Tong Y Plant Physiol; 2015 Feb; 167(2):411-23. PubMed ID: 25489021 [TBL] [Abstract][Full Text] [Related]
14. The tetraploid wheat (Triticum dicoccum (Schrank) Schuebl.) improves nitrogen uptake and assimilation adaptation to nitrogen-deficit stress. Zhang S; Xu L; Zheng Q; Hu J; Jiang D; Dai T; Tian Z Planta; 2024 May; 259(6):151. PubMed ID: 38733553 [TBL] [Abstract][Full Text] [Related]
15. Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence. Pearce S; Tabbita F; Cantu D; Buffalo V; Avni R; Vazquez-Gross H; Zhao R; Conley CJ; Distelfeld A; Dubcovksy J BMC Plant Biol; 2014 Dec; 14():368. PubMed ID: 25524236 [TBL] [Abstract][Full Text] [Related]
16. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation. Bhati KK; Alok A; Kumar A; Kaur J; Tiwari S; Pandey AK J Exp Bot; 2016 Jul; 67(14):4379-89. PubMed ID: 27342224 [TBL] [Abstract][Full Text] [Related]
17. The Nitrate-Inducible NAC Transcription Factor TaNAC2-5A Controls Nitrate Response and Increases Wheat Yield. He X; Qu B; Li W; Zhao X; Teng W; Ma W; Ren Y; Li B; Li Z; Tong Y Plant Physiol; 2015 Nov; 169(3):1991-2005. PubMed ID: 26371233 [TBL] [Abstract][Full Text] [Related]
18. Wheat stem reserves and salinity tolerance: molecular dissection of fructan biosynthesis and remobilization to grains. Sharbatkhari M; Shobbar ZS; Galeshi S; Nakhoda B Planta; 2016 Jul; 244(1):191-202. PubMed ID: 27016249 [TBL] [Abstract][Full Text] [Related]
19. The proportion of nitrate in leaf nitrogen, but not changes in root growth, are associated with decreased grain protein in wheat under elevated [CO Bahrami H; De Kok LJ; Armstrong R; Fitzgerald GJ; Bourgault M; Henty S; Tausz M; Tausz-Posch S J Plant Physiol; 2017 Sep; 216():44-51. PubMed ID: 28575746 [TBL] [Abstract][Full Text] [Related]
20. The Expression of TaRca2-α Gene Associated with Net Photosynthesis Rate, Biomass and Grain Yield in Bread Wheat (Triticum aestivum L.) under Field Conditions. Saeed I; Bachir DG; Chen L; Hu YG PLoS One; 2016; 11(8):e0161308. PubMed ID: 27548477 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]