BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 28710382)

  • 1. Netrin-1 promotes glioma growth by activating NF-κB via UNC5A.
    Chen JY; He XX; Ma C; Wu XM; Wan XL; Xing ZK; Pei QQ; Dong XP; Liu DX; Xiong WC; Zhu XJ
    Sci Rep; 2017 Jul; 7(1):5454. PubMed ID: 28710382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silencing of IKKε using siRNA inhibits proliferation and invasion of glioma cells in vitro and in vivo.
    Li H; Chen L; Zhang A; Wang G; Han L; Yu K; Pu P; Kang C; Huang Q
    Int J Oncol; 2012 Jul; 41(1):169-78. PubMed ID: 22552702
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) promotes glioma cell invasion through induction of NF-κB-inducing kinase (NIK) and noncanonical NF-κB signaling.
    Cherry EM; Lee DW; Jung JU; Sitcheran R
    Mol Cancer; 2015 Jan; 14(1):9. PubMed ID: 25622756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motility of glioblastoma cells is driven by netrin-1 induced gain of stemness.
    Ylivinkka I; Sihto H; Tynninen O; Hu Y; Laakso A; Kivisaari R; Laakkonen P; Keski-Oja J; Hyytiäinen M
    J Exp Clin Cancer Res; 2017 Jan; 36(1):9. PubMed ID: 28069038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Jagged1 is Clinically Prognostic and Promotes Invasion of Glioma-Initiating Cells by Activating NF-κB(p65) Signaling.
    Hai L; Liu P; Yu S; Yi L; Tao Z; Zhang C; Abeysekera IR; Li T; Tong L; Ma H; Liu B; Xie Y; Zhou X; Lin Y; Zhu M; Zhang K; Ren B; Ming H; Huang Y; Yang X
    Cell Physiol Biochem; 2018; 51(6):2925-2937. PubMed ID: 30580328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of transcriptional coactivator TAZ in gliomas.
    Li W; Dong S; Wei W; Wang G; Zhang A; Pu P; Jia Z
    Oncotarget; 2016 Dec; 7(50):82686-82699. PubMed ID: 27764783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miR-139 Functions as An Antioncomir to Repress Glioma Progression Through Targeting IGF-1 R, AMY-1, and PGC-1β.
    Wang H; Yan X; Ji LY; Ji XT; Wang P; Guo SW; Li SZ
    Technol Cancer Res Treat; 2017 Aug; 16(4):497-511. PubMed ID: 26868851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cullin-7 (CUL7) is overexpressed in glioma cells and promotes tumorigenesis via NF-κB activation.
    Xu J; Zhang Z; Qian M; Wang S; Qiu W; Chen Z; Sun Z; Xiong Y; Wang C; Sun X; Zhao R; Xue H; Li G
    J Exp Clin Cancer Res; 2020 Apr; 39(1):59. PubMed ID: 32252802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing VDAC1 expression induces a non-apoptotic role for pro-apoptotic proteins in cancer cell differentiation.
    Arif T; Krelin Y; Shoshan-Barmatz V
    Biochim Biophys Acta; 2016 Aug; 1857(8):1228-1242. PubMed ID: 27080741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A positive feedback loop of miR-30a-5p-WWP1-NF-κB in the regulation of glioma development.
    Zhao P; Wang M; An J; Sun H; Li T; Li D
    Int J Biochem Cell Biol; 2019 Jul; 112():39-49. PubMed ID: 30978403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma.
    Kesanakurti D; Chetty C; Rajasekhar Maddirela D; Gujrati M; Rao JS
    Oncogene; 2013 Oct; 32(43):5144-55. PubMed ID: 23178493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transmembrane protein with unknown function 16A overexpression promotes glioma formation through the nuclear factor-κB signaling pathway.
    Liu J; Liu Y; Ren Y; Kang L; Zhang L
    Mol Med Rep; 2014 Mar; 9(3):1068-74. PubMed ID: 24401903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TRAM2 promotes the malignant progression of glioma through PI3K/AKT/mTOR pathway.
    Gao X; Jiang W; Ke Z; Huang Q; Chen L; Zhang G; Li C; Yu X
    Biochem Biophys Res Commun; 2022 Jan; 586():34-41. PubMed ID: 34826698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Netrin-1 improves adipose-derived stem cell proliferation, migration, and treatment effect in type 2 diabetic mice with sciatic denervation.
    Zhang X; Qin J; Wang X; Guo X; Liu J; Wang X; Wu X; Lu X; Li W; Liu X
    Stem Cell Res Ther; 2018 Oct; 9(1):285. PubMed ID: 30359296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forced downregulation of RACK1 inhibits glioma development by suppressing Src/Akt signaling activity.
    Peng R; Jiang B; Ma J; Ma Z; Wan X; Liu H; Chen Z; Cheng Q; Chen R
    Oncol Rep; 2013 Nov; 30(5):2195-202. PubMed ID: 24008630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The 37-kDa laminin receptor precursor regulates the malignancy of human glioma cells.
    Wu H; Li J; Xu D; Jv D; Meng X; Qiao P; Cui T; Shi B
    Cell Biochem Funct; 2016 Oct; 34(7):516-521. PubMed ID: 27748570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pard3 suppresses glioma invasion by regulating RhoA through atypical protein kinase C/NF-κB signaling.
    Li J; Xu H; Wang Q; Fu P; Huang T; Anas O; Zhao H; Xiong N
    Cancer Med; 2019 May; 8(5):2288-2302. PubMed ID: 30848088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of isocitrate dehydrogenase 1 induces glioma cell proliferation via nuclear factor-κB activation in a hypoxia-inducible factor 1-α dependent manner.
    Wang G; Sai K; Gong F; Yang Q; Chen F; Lin J
    Mol Med Rep; 2014 May; 9(5):1799-805. PubMed ID: 24626950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repression of the expression of PPP3CC by ZEB1 confers activation of NF-κB and contributes to invasion and growth in glioma cells.
    Wang H; Zhao S; Chen B; Fu C; Dang Y; Fang P; Wang J; Wang N; Liu L
    Jpn J Clin Oncol; 2018 Feb; 48(2):175-183. PubMed ID: 29294030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. p68 RNA helicase promotes glioma cell proliferation in vitro and in vivo via direct regulation of NF-κB transcription factor p50.
    Wang R; Jiao Z; Li R; Yue H; Chen L
    Neuro Oncol; 2012 Sep; 14(9):1116-24. PubMed ID: 22810421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.