These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28710446)

  • 1. The movement of small insects in the convective boundary layer: linking patterns to processes.
    Wainwright CE; Stepanian PM; Reynolds DR; Reynolds AM
    Sci Rep; 2017 Jul; 7(1):5438. PubMed ID: 28710446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linking Small-Scale Flight Manoeuvers and Density Profiles to the Vertical Movement of Insects in the Nocturnal Stable Boundary Layer.
    Wainwright CE; Reynolds DR; Reynolds AM
    Sci Rep; 2020 Jan; 10(1):1019. PubMed ID: 31974508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aphid aerial density profiles are consistent with turbulent advection amplifying flight behaviours: abandoning the epithet 'passive'.
    Reynolds AM; Reynolds DR
    Proc Biol Sci; 2009 Jan; 276(1654):137-43. PubMed ID: 18782743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting insect migration density and speed in the daytime convective boundary layer.
    Bell JR; Aralimarad P; Lim KS; Chapman JW
    PLoS One; 2013; 8(1):e54202. PubMed ID: 23359799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radar studies of the vertical distribution of insects migrating over southern Britain: the influence of temperature inversions on nocturnal layer concentrations.
    Reynolds DR; Chapman JW; Edwards AS; Smith AD; Wood CR; Barlow JF; Woiwod IP
    Bull Entomol Res; 2005 Jun; 95(3):259-74. PubMed ID: 15960880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A radar study of emigratory flight and layer formation by insects at dawn over southern Britain.
    Reynolds DR; Smith AD; Chapman JW
    Bull Entomol Res; 2008 Feb; 98(1):35-52. PubMed ID: 18076783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of the atmospheric boundary layer on nocturnal layers of noctuids and other moths migrating over southern Britain.
    Wood CR; Chapman JW; Reynolds DR; Barlow JF; Smith AD; Woiwod IP
    Int J Biometeorol; 2006 Mar; 50(4):193-204. PubMed ID: 16432728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observations of movement dynamics of flying insects using high resolution lidar.
    Kirkeby C; Wellenreuther M; Brydegaard M
    Sci Rep; 2016 Jul; 6():29083. PubMed ID: 27375089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radar observations of the autumn migration of the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) and other moths in northern China.
    Feng HQ; Wu KM; Cheng DF; Guo YY
    Bull Entomol Res; 2003 Apr; 93(2):115-24. PubMed ID: 12699532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
    Chapman JW; Reynolds DR; Mouritsen H; Hill JK; Riley JR; Sivell D; Smith AD; Woiwod IP
    Curr Biol; 2008 Apr; 18(7):514-8. PubMed ID: 18394893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flight orientation behaviors promote optimal migration trajectories in high-flying insects.
    Chapman JW; Nesbit RL; Burgin LE; Reynolds DR; Smith AD; Middleton DR; Hill JK
    Science; 2010 Feb; 327(5966):682-5. PubMed ID: 20133570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergent patterns of long-distance nocturnal migration in noctuid moths and passerine birds.
    Alerstam T; Chapman JW; Bäckman J; Smith AD; Karlsson H; Nilsson C; Reynolds DR; Klaassen RH; Hill JK
    Proc Biol Sci; 2011 Oct; 278(1721):3074-80. PubMed ID: 21389024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping wintering waterfowl distributions using weather surveillance radar.
    Buler JJ; Randall LA; Fleskes JP; Barrow WC; Bogart T; Kluver D
    PLoS One; 2012; 7(7):e41571. PubMed ID: 22911816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flight periodicity and the vertical distribution of high-altitude moth migration over southern Britain.
    Wood CR; Reynolds DR; Wells PM; Barlow JF; Woiwod IP; Chapman JW
    Bull Entomol Res; 2009 Oct; 99(5):525-35. PubMed ID: 19224662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doppler radar detection of exceptional mass-migration of aphids into Finland.
    Nieminen M; Leskinen M; Helenius J
    Int J Biometeorol; 2000 Nov; 44(4):172-81. PubMed ID: 11131288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nocturnal celestial illumination on high-flying migrant insects.
    Gao B; Hu G; Chapman JW
    Philos Trans R Soc Lond B Biol Sci; 2024 Jun; 379(1904):20230115. PubMed ID: 38705175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of traffic estimates of nocturnal flying animals using radar, thermal imaging, and acoustic recording.
    Horton KG; Shriver WG; Buler JJ
    Ecol Appl; 2015 Mar; 25(2):390-401. PubMed ID: 26263662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Urban areas affect flight altitudes of nocturnally migrating birds.
    Cabrera-Cruz SA; Smolinsky JA; McCarthy KP; Buler JJ
    J Anim Ecol; 2019 Dec; 88(12):1873-1887. PubMed ID: 31330569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orientation cues for high-flying nocturnal insect migrants: do turbulence-induced temperature and velocity fluctuations indicate the mean wind flow?
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    PLoS One; 2010 Dec; 5(12):e15758. PubMed ID: 21209956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of vertical-looking radar to continuously monitor the insect fauna flying at altitude over southern England.
    Smith AD; Reynolds DR; Riley JR
    Bull Entomol Res; 2000 Jun; 90(3):265-77. PubMed ID: 10996867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.