These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 28710624)
1. Identification and Characterization of the Genes and Enzymes Belonging to the Bile Acid Catabolic Pathway in Pseudomonas. Luengo JM; Olivera ER Methods Mol Biol; 2017; 1645():109-142. PubMed ID: 28710624 [TBL] [Abstract][Full Text] [Related]
2. Identification and Characterization of Some Genes, Enzymes, and Metabolic Intermediates Belonging to the Bile Acid Aerobic Catabolic Pathway from Pseudomonas. Luengo JM; Olivera ER Methods Mol Biol; 2023; 2704():51-83. PubMed ID: 37642838 [TBL] [Abstract][Full Text] [Related]
3. Functional analyses of three acyl-CoA synthetases involved in bile acid degradation in Pseudomonas putida DOC21. Barrientos Á; Merino E; Casabon I; Rodríguez J; Crowe AM; Holert J; Philipp B; Eltis LD; Olivera ER; Luengo JM Environ Microbiol; 2015 Jan; 17(1):47-63. PubMed ID: 24428272 [TBL] [Abstract][Full Text] [Related]
4. Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Merino E; Barrientos A; Rodríguez J; Naharro G; Luengo JM; Olivera ER Appl Microbiol Biotechnol; 2013 Jan; 97(2):891-904. PubMed ID: 22406861 [TBL] [Abstract][Full Text] [Related]
5. Biochemical and genetic investigation of initial reactions in aerobic degradation of the bile acid cholate in Pseudomonas sp. strain Chol1. Birkenmaier A; Holert J; Erdbrink H; Moeller HM; Friemel A; Schoenenberger R; Suter MJ; Klebensberger J; Philipp B J Bacteriol; 2007 Oct; 189(20):7165-73. PubMed ID: 17693490 [TBL] [Abstract][Full Text] [Related]
6. Pseudomonas mutant strains that accumulate androstane and seco-androstane intermediates from bile acids. Leppik RA; Sinden DJ Biochem J; 1987 Apr; 243(1):15-21. PubMed ID: 3038076 [TBL] [Abstract][Full Text] [Related]
7. Deepening TOL and TOU catabolic pathways of Pseudomonas sp. OX1: cloning, sequencing and characterization of the lower pathways. Bertini L; Cafaro V; Proietti S; Caporale C; Capasso P; Caruso C; Di Donato A Biochimie; 2013 Feb; 95(2):241-50. PubMed ID: 23009925 [TBL] [Abstract][Full Text] [Related]
8. Functional Characterization of a 28-Kilobase Catabolic Island from Pseudomonas sp. Strain M1 Involved in Biotransformation of β-Myrcene and Related Plant-Derived Volatiles. Soares-Castro P; Montenegro-Silva P; Heipieper HJ; Santos PM Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28213543 [No Abstract] [Full Text] [Related]
10. The major neutral products of the aerobic catabolism of cattle bile by Pseudomonas sp. ATCC 31752. Park RJ Steroids; 1981 Oct; 38(4):383-95. PubMed ID: 7314155 [TBL] [Abstract][Full Text] [Related]
11. Identification of bypass reactions leading to the formation of one central steroid degradation intermediate in metabolism of different bile salts in Pseudomonas sp. strain Chol1. Holert J; Yücel O; Jagmann N; Prestel A; Möller HM; Philipp B Environ Microbiol; 2016 Oct; 18(10):3373-3389. PubMed ID: 26691005 [TBL] [Abstract][Full Text] [Related]
12. A catecholic 9,10-seco steroid as a product of aerobic catabolism of cholic acid by a Pseudomonas sp. Park RJ; Dunn NW; Ide JA Steroids; 1986; 48(5-6):439-50. PubMed ID: 3445293 [TBL] [Abstract][Full Text] [Related]
14. The genetics of bile acid degradation in Pseudomonas spp.: location and cloning of catabolic genes. Leppik RA J Gen Microbiol; 1989 Jul; 135(7):1989-96. PubMed ID: 2559156 [TBL] [Abstract][Full Text] [Related]
15. Catabolism of biogenic amines in Pseudomonas species. Luengo JM; Olivera ER Environ Microbiol; 2020 Apr; 22(4):1174-1192. PubMed ID: 31912965 [TBL] [Abstract][Full Text] [Related]
16. A β-Alanine Catabolism Pathway Containing a Highly Promiscuous ω-Transaminase in the 12-Aminododecanate-Degrading Pseudomonas sp. Strain AAC. Wilding M; Peat TS; Newman J; Scott C Appl Environ Microbiol; 2016 Jul; 82(13):3846-3856. PubMed ID: 27107110 [TBL] [Abstract][Full Text] [Related]
17. Comparative Analysis of Bile-Salt Degradation in Feller FM; Richtsmeier P; Wege M; Philipp B Appl Environ Microbiol; 2021 Oct; 87(22):e0145321. PubMed ID: 34469190 [TBL] [Abstract][Full Text] [Related]
18. An upp-based markerless gene replacement method for genome reduction and metabolic pathway engineering in Pseudomonas mendocina NK-01 and Pseudomonas putida KT2440. Wang Y; Zhang C; Gong T; Zuo Z; Zhao F; Fan X; Yang C; Song C J Microbiol Methods; 2015 Jun; 113():27-33. PubMed ID: 25828098 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of β-valine via a CoA-dependent ammonia lyase pathway. Otzen M; Crismaru CG; Postema CP; Wijma HJ; Heberling MM; Szymanski W; de Wildeman S; Janssen DB Appl Microbiol Biotechnol; 2015 Nov; 99(21):8987-98. PubMed ID: 26004802 [TBL] [Abstract][Full Text] [Related]
20. Isolation of Environmental Bacteria Able to Degrade Sterols and/or Bile Acids: Determination of Cholesterol Oxidase and Several Hydroxysteroid Dehydrogenase Activities in Rhodococcus, Gordonia, and Pseudomonas putida. Chamizo-Ampudia A; Getino L; Luengo JM; Olivera ER Methods Mol Biol; 2023; 2704():25-42. PubMed ID: 37642836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]