BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 28710626)

  • 1. Stigmasterol Removal by an Aerobic Treatment System.
    Chamorro S; Xavier C; Hernández V; Becerra J; Vidal G
    Methods Mol Biol; 2017; 1645():151-158. PubMed ID: 28710626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stigmasterol Removal by an Aerobic Treatment System.
    Chamorro S; Xavier C; Vidal G
    Methods Mol Biol; 2023; 2704():329-336. PubMed ID: 37642854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of stigmasterol from Kraft mill effluent by aerobic biological treatment with steroidal metabolite detection.
    Chamorro S; Vergara JP; Jarpa M; Hernandez V; Becerra J; Vidal G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Oct; 51(12):1012-7. PubMed ID: 27399163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic effects of Pinus radiata and Eucalyptus globulus kraft mill effluents and phytosterols on Daphnia magna.
    López D; Chamorro S; Silva J; Bay-Schmith E; Vidal G
    Bull Environ Contam Toxicol; 2011 Dec; 87(6):633-7. PubMed ID: 21979137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activated sludge versus aerated lagoon treatment of kraft mill effluents containing beta-sitosterol and stigmasterol.
    Xavier CR; Mosquera-Corral A; Becerra J; Hernandez V; Vidal G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Mar; 44(4):327-35. PubMed ID: 19184698
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring endocrine activity in kraft mill effluent treated by aerobic moving bed bioreactor system.
    Chamorro S; Pozo G; Jarpa M; Hernandez V; Becerra J; Vidal G
    Water Sci Technol; 2010; 62(1):154-61. PubMed ID: 20595766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformation of phytosterols under aerobic conditions.
    Dykstra CM; Giles HD; Banerjee S; Pavlostathis SG
    Water Res; 2014 Jul; 58():71-81. PubMed ID: 24747138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved aerobic biodegradation of abietic acid in ECF bleached kraft mill effluent due to biomass adaptation.
    Belmonte M; Xavier C; Decap J; Martinez M; Sierra-Alvarez R; Vidal G
    J Hazard Mater; 2006 Jul; 135(1-3):256-63. PubMed ID: 16386835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upgrading of an activated sludge wastewater treatment plant by adding a moving bed biofilm reactor as pre-treatment and ozonation followed by biofiltration for enhanced COD reduction: design and operation experience.
    Kaindl N
    Water Sci Technol; 2010; 62(11):2710-9. PubMed ID: 21099060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic biodegradation of sterols contained in kraft mill effluents.
    Vidal G; Becerra J; Hernández V; Decap J; Xavier CR
    J Biosci Bioeng; 2007 Dec; 104(6):476-80. PubMed ID: 18215634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the performance of MBBR and SBR systems for the treatment of anaerobic reactor biowaste effluent.
    Comett-Ambriz I; Gonzalez-Martinez S; Wilderer P
    Water Sci Technol; 2003; 47(12):155-61. PubMed ID: 12926683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aerobic moving bed bioreactor performance: a comparative study of removal efficiencies of kraft mill effluents from Pinus radiata and Eucalyptus globulus as raw material.
    Villamar CA; Jarpa M; Decap J; Vidal G
    Water Sci Technol; 2009; 59(3):507-14. PubMed ID: 19214005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sublethal Effects of Chlorine-Free Kraft Mill Effluents on Daphnia magna.
    Chamorro S; López D; Brito P; Jarpa M; Piña B; Vidal G
    Bull Environ Contam Toxicol; 2016 Dec; 97(6):843-847. PubMed ID: 27704189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor.
    Tawfik A; El-Gohary F; Temmink H
    Bioprocess Biosyst Eng; 2010 Feb; 33(2):267-76. PubMed ID: 19404682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions.
    Zeng M; Soric A; Roche N
    Bioresour Technol; 2013 Sep; 144():202-9. PubMed ID: 23871921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Biological phosphorus removal in intermittent aerated biological filter].
    Zeng LY; Yang CP; Guo JY; Luo SL
    Huan Jing Ke Xue; 2012 Jan; 33(1):197-202. PubMed ID: 22452210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals.
    Hu Z; Ferraina RA; Ericson JF; Mackay AA; Smets BF
    Water Res; 2005 Feb; 39(4):710-20. PubMed ID: 15707644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the sensitivities of fish, Microtox and Daphnia-magna bioassays to amoxycillin in anaerobic/aerobic sequential reactor systems.
    Çelebi H; Sponza DT
    Water Sci Technol; 2012; 66(5):1117-31. PubMed ID: 22797243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system.
    Chen S; Sun D; Chung JS
    Waste Manag; 2008; 28(2):339-46. PubMed ID: 17376667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.