These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 28710628)
1. β-Sitosterol Bioconversion to Androstenedione in Microtiter Plates. Marques MPC; Fernandes P Methods Mol Biol; 2017; 1645():167-176. PubMed ID: 28710628 [TBL] [Abstract][Full Text] [Related]
2. β-Sitosterol Bioconversion in Small-Scale Devices: From Microtiter Plates to Microfluidic Reactors. Marques MPC; Aranda Hernandez J; Fernandes P Methods Mol Biol; 2023; 2704():201-219. PubMed ID: 37642846 [TBL] [Abstract][Full Text] [Related]
3. Characterization of 24-well microtiter plate reactors for a complex multistep bioconversion: from sitosterol to androstenedione. Marques MP; Magalhães S; Cabral JM; Fernandes P J Biotechnol; 2009 May; 141(3-4):174-80. PubMed ID: 19433223 [TBL] [Abstract][Full Text] [Related]
4. Biocatalysis of Steroids with Mycobacterium sp. in Aqueous and Organic Media. de Carvalho CCCR; Fernandes P Methods Mol Biol; 2017; 1645():313-320. PubMed ID: 28710638 [TBL] [Abstract][Full Text] [Related]
5. A microwell platform for the scale-up of a multistep bioconversion to bench-scale reactors: sitosterol side-chain cleavage. Marques MP; Cabral JM; Fernandes P Biotechnol J; 2010 Apr; 5(4):402-12. PubMed ID: 20235144 [TBL] [Abstract][Full Text] [Related]
6. Scale-Up of Phytosterols Bioconversion into Androstenedione. Martínez-Cámara S; Bahíllo E; Barredo JL; Rodríguez-Sáiz M Methods Mol Biol; 2017; 1645():199-210. PubMed ID: 28710630 [TBL] [Abstract][Full Text] [Related]
7. Production and Biotransformation of Phytosterol Microdispersions to Produce 4-Androstene-3,17-Dione. Mancilla RA; Pavez-Díaz R; Amoroso A Methods Mol Biol; 2017; 1645():159-165. PubMed ID: 28710627 [TBL] [Abstract][Full Text] [Related]
8. [Accumulation of 9α-hydroxy-4-androstene-3,17-dione by co-expressing kshA and kshB encoding component of 3-ketosteroid-9α-hydroxylase in Mycobacterium sp. NRRL B-3805]. Yuan J; Chen G; Cheng S; Ge F; Qiong W; Li W; Li J Sheng Wu Gong Cheng Xue Bao; 2015 Apr; 31(4):523-33. PubMed ID: 26380409 [TBL] [Abstract][Full Text] [Related]
9. [Microbial degradation of beta-sitosterol: production of delta 4-androstene-3,17-dione]. Wang JY; Yin ZH; Zhou WS Yao Xue Xue Bao; 1992; 27(1):22-5. PubMed ID: 1529708 [TBL] [Abstract][Full Text] [Related]
11. Selection of Mycobacterium sp. strains with capacity to biotransform high concentrations of beta-sitosterol. Vidal M; Becerra J; Mondaca MA; Silva M Appl Microbiol Biotechnol; 2001 Oct; 57(3):385-9. PubMed ID: 11759690 [TBL] [Abstract][Full Text] [Related]
12. Scaling-up of complex whole-cell bioconversions in conventional and non-conventional media. Marques MP; de Carvalho CC; Cabral JM; Fernandes P Biotechnol Bioeng; 2010 Jul; 106(4):619-26. PubMed ID: 20503299 [TBL] [Abstract][Full Text] [Related]
13. Genetic Techniques for Manipulation of the Phytosterol Biotransformation Strain Mycobacterium neoaurum NRRL B-3805. Loraine JK; Smith MCM Methods Mol Biol; 2017; 1645():93-108. PubMed ID: 28710623 [TBL] [Abstract][Full Text] [Related]
14. Selection of Biodegrading Phytosterol Strains. Mondaca MA; Vidal M; Chamorro S; Vidal G Methods Mol Biol; 2017; 1645():143-150. PubMed ID: 28710625 [TBL] [Abstract][Full Text] [Related]
15. Whole-genome and enzymatic analyses of an androstenedione-producing Mycobacterium strain with residual phytosterol-degrading pathways. Wang H; Song S; Peng F; Yang F; Chen T; Li X; Cheng X; He Y; Huang Y; Su Z Microb Cell Fact; 2020 Oct; 19(1):187. PubMed ID: 33008397 [TBL] [Abstract][Full Text] [Related]
16. Effects of Different Carbon Sources on Growth, Membrane Permeability, β-Sitosterol Consumption, Androstadienedione and Androstenedione Production by Mycobacterium neoaurum. Yin Y Interdiscip Sci; 2016 Mar; 8(1):102-7. PubMed ID: 26298579 [TBL] [Abstract][Full Text] [Related]
17. Nutrient broth/PEG200/TritonX114/Tween80/Chloroform microemulsion as a reservoir of solubilized sitosterol for biotransformation to androstenedione. Malaviya A; Gomes J J Ind Microbiol Biotechnol; 2008 Nov; 35(11):1435-40. PubMed ID: 18716812 [TBL] [Abstract][Full Text] [Related]
18. Bioconversion of sitosterol to useful steroidal intermediates by mutants of Mycobacterium fortuitum. Wovcha MG; Antosz FJ; Knight JC; Kominek LA; Pyke TR Biochim Biophys Acta; 1978 Dec; 531(3):308-21. PubMed ID: 737192 [TBL] [Abstract][Full Text] [Related]
19. Complete genome sequence of 'Mycobacterium neoaurum' NRRL B-3805, an androstenedione (AD) producer for industrial biotransformation of sterols. Rodríguez-García A; Fernández-Alegre E; Morales A; Sola-Landa A; Lorraine J; Macdonald S; Dovbnya D; Smith MC; Donova M; Barreiro C J Biotechnol; 2016 Apr; 224():64-5. PubMed ID: 26988397 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of mycobacterial cells onto silicone--assessing the feasibility of the immobilized biocatalyst in the production of androstenedione from sitosterol. Claudino MJ; Soares D; Van Keulen F; Marques MP; Cabral JM; Fernandes P Bioresour Technol; 2008 May; 99(7):2304-11. PubMed ID: 17596940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]