BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 28710726)

  • 21. Removal of arsenic from water using manganese (III) oxide: Adsorption of As(III) and As(V).
    Babaeivelni K; Khodadoust AP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(4):277-88. PubMed ID: 26745439
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adsorption process of fluoride from drinking water with magnetic core-shell Ce-Ti@Fe
    Abo Markeb A; Alonso A; Sánchez A; Font X
    Sci Total Environ; 2017 Nov; 598():949-958. PubMed ID: 28468121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced arsenite removal in aqueous with Fe-Ce-Cu ternary oxide nanoparticle.
    Liu Y; Li L; Huang X; Liu Y
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):95493-95506. PubMed ID: 37552441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Use of ferric-impregnated volcanic ash for arsenate (V) adsorption from contaminated water with various mineralization degrees.
    Chen R; Zhang Z; Yang Y; Lei Z; Chen N; Guo X; Zhao C; Sugiura N
    J Colloid Interface Sci; 2011 Jan; 353(2):542-8. PubMed ID: 20974472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning the structure of cerium-based metal-organic frameworks for efficient removal of arsenic species: The role of organic ligands.
    Pervez MN; Chen C; Li Z; Naddeo V; Zhao Y
    Chemosphere; 2022 Sep; 303(Pt 1):134934. PubMed ID: 35561775
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum chemical study of arsenic (III, V) adsorption on Mn-oxides: implications for arsenic(III) oxidation.
    Zhu M; Paul KW; Kubicki JD; Sparks DL
    Environ Sci Technol; 2009 Sep; 43(17):6655-61. PubMed ID: 19764231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Column studies on the evaluation of novel spacer granules for the removal of arsenite and arsenate from contaminated water.
    Gupta A; Sankararamakrishnan N
    Bioresour Technol; 2010 Apr; 101(7):2173-9. PubMed ID: 20005095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of divalent heavy metals (Cd, Cu, Pb, and Zn) and arsenic(III) from aqueous solutions using scoria: kinetics and equilibria of sorption.
    Kwon JS; Yun ST; Lee JH; Kim SO; Jo HY
    J Hazard Mater; 2010 Feb; 174(1-3):307-13. PubMed ID: 19828237
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Preparation, characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water.
    Deng S; Li Z; Huang J; Yu G
    J Hazard Mater; 2010 Jul; 179(1-3):1014-21. PubMed ID: 20403658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sorptive removal of arsenate using termite mound.
    Fufa F; Alemayehu E; Lennartz B
    J Environ Manage; 2014 Jan; 132():188-96. PubMed ID: 24309232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions.
    Mohamed A; Osman TA; Toprak MS; Muhammed M; Uheida A
    Chemosphere; 2017 Aug; 180():108-116. PubMed ID: 28395148
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Volcanic Rock Materials for Defluoridation of Water in Fixed-Bed Column Systems.
    Geleta WS; Alemayehu E; Lennartz B
    Molecules; 2021 Feb; 26(4):. PubMed ID: 33673208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of activated carbon-based amino phosphonic acid chelating resin and its adsorption properties for Ce(III) removal.
    Chen T; Yan C; Wang Y; Tang C; Zhou S; Zhao Y; Ma R; Duan P
    Environ Technol; 2015; 36(17):2168-76. PubMed ID: 25730666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fe3O4 and MnO2 assembled on honeycomb briquette cinders (HBC) for arsenic removal from aqueous solutions.
    Zhu J; Baig SA; Sheng T; Lou Z; Wang Z; Xu X
    J Hazard Mater; 2015 Apr; 286():220-8. PubMed ID: 25585269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced arsenite removal through surface-catalyzed oxidative coagulation treatment.
    Li Y; Bland GD; Yan W
    Chemosphere; 2016 May; 150():650-658. PubMed ID: 26897520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. As(III) and As(V) sorption on iron-modified non-pyrolyzed and pyrolyzed biomass from Petroselinum crispum (parsley).
    Jiménez-Cedillo MJ; Olguín MT; Fall C; Colin-Cruz A
    J Environ Manage; 2013 Mar; 117():242-52. PubMed ID: 23376307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arsenic removal from water using lignocellulose adsorption medium (LAM).
    Kim J; Mann JD; Spencer JG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(8):1529-42. PubMed ID: 16835109
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fe3+ and amino functioned mesoporous silica: preparation, structural analysis and arsenic adsorption.
    Zuo JC; Tong SR; Yu XL; Wu LY; Cao CY; Ge MF; Song WG
    J Hazard Mater; 2012 Oct; 235-236():336-42. PubMed ID: 22917496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arsenic binding mechanisms on natural red earth: a potential substrate for pollution control.
    Vithanage M; Senevirathna W; Chandrajith R; Weerasooriya R
    Sci Total Environ; 2007 Jul; 379(2-3):244-8. PubMed ID: 17078998
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced arsenic removal by reusable hexagonal CeO
    Song B; Zhi Z; Zhou Q; Wu D; Yu L; Gong F; Yin Y; Meng F; Li C; Chen Z; Song M
    Sci Total Environ; 2022 Nov; 847():157490. PubMed ID: 35870585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.