BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 28710838)

  • 1. Enzyme-Free Ligation of 5'-Phosphorylated Oligodeoxynucleotides in a DNA Nanostructure.
    Kramer M; Richert C
    Chem Biodivers; 2017 Sep; 14(9):. PubMed ID: 28710838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphoramidate Ligation of Oligonucleotides in Nanoscale Structures.
    Kalinowski M; Haug R; Said H; Piasecka S; Kramer M; Richert C
    Chembiochem; 2016 Jun; 17(12):1150-5. PubMed ID: 27225865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization and structural changes of 2D DNA origami by enzymatic ligation.
    Rajendran A; Krishnamurthy K; Giridasappa A; Nakata E; Morii T
    Nucleic Acids Res; 2021 Aug; 49(14):7884-7900. PubMed ID: 34289063
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.
    He K; Li Z; Liu L; Zheng M; Mao C
    Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of BrCN for assembling modified DNA duplexes and DNA-RNA hybrids; comparison with water-soluble carbodiimide.
    Dolinnaya NG; Sokolova NI; Ashirbekova DT; Shabarova ZA
    Nucleic Acids Res; 1991 Jun; 19(11):3067-72. PubMed ID: 1711679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene assembly via one-pot chemical ligation of DNA promoted by DNA nanostructures.
    Manuguerra I; Croce S; El-Sagheer AH; Krissanaprasit A; Brown T; Gothelf KV; Manetto A
    Chem Commun (Camb); 2018 May; 54(36):4529-4532. PubMed ID: 29662975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the stability of DNA origami nanostructures: staple strand redesign versus enzymatic ligation.
    Ramakrishnan S; Schärfen L; Hunold K; Fricke S; Grundmeier G; Schlierf M; Keller A; Krainer G
    Nanoscale; 2019 Sep; 11(35):16270-16276. PubMed ID: 31455950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-directed modification of DNA duplexes by chemical ligation.
    Dolinnaya NG; Sokolova NI; Gryaznova OI; Shabarova ZA
    Nucleic Acids Res; 1988 May; 16(9):3721-38. PubMed ID: 3375071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA Nanostructures as Catalysts: Double Crossover Tile-Assisted 5' to 5' and 3' to 3' Chemical Ligation of Oligonucleotides.
    Bardales AC; Mills JR; Kolpashchikov DM
    Bioconjug Chem; 2024 Jan; 35(1):28-33. PubMed ID: 38135674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconfiguration of DNA nanostructures induced by enzymatic ligation treatment.
    Bai T; Zhang J; Huang K; Wang W; Chen B; Li Y; Zhao M; Zhang S; Zhu C; Liu D; Wei B
    Nucleic Acids Res; 2022 Aug; 50(14):8392-8398. PubMed ID: 35880584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triplex addressability as a basis for functional DNA nanostructures.
    Tumpane J; Kumar R; Lundberg EP; Sandin P; Gale N; Nandhakumar IS; Albinsson B; Lincoln P; Wilhelmsson LM; Brown T; Nordén B
    Nano Lett; 2007 Dec; 7(12):3832-9. PubMed ID: 17983251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical approaches to DNA nanotechnology.
    Endo M; Sugiyama H
    Chembiochem; 2009 Oct; 10(15):2420-43. PubMed ID: 19714700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-Pot Synthesis of Defined-Length ssDNA for Multiscaffold DNA Origami.
    Noteborn WEM; Abendstein L; Sharp TH
    Bioconjug Chem; 2021 Jan; 32(1):94-98. PubMed ID: 33307668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical ligation of an entire DNA origami nanostructure.
    Weizenmann N; Scheidgen-Kleyboldt G; Ye J; Krause CB; Kauert D; Helmi S; Rouillon C; Seidel R
    Nanoscale; 2021 Oct; 13(41):17556-17565. PubMed ID: 34657945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template.
    Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns.
    Yang Y; Endo M; Hidaka K; Sugiyama H
    J Am Chem Soc; 2012 Dec; 134(51):20645-53. PubMed ID: 23210720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards Efficient Nonenzymatic DNA Ligation: Comparing Key Parameters for Maximizing Ligation Rates and Yields with Carbodiimide Activation*.
    Obianyor C; Newnam G; Clifton BE; Grover MA; Hud NV
    Chembiochem; 2020 Dec; 21(23):3359-3370. PubMed ID: 32705742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. M1.3--a small scaffold for DNA origami .
    Said H; Schüller VJ; Eber FJ; Wege C; Liedl T; Richert C
    Nanoscale; 2013 Jan; 5(1):284-90. PubMed ID: 23160434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.