These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 28710919)

  • 1. Regulation of potassium transport and signaling in plants.
    Wang Y; Wu WH
    Curr Opin Plant Biol; 2017 Oct; 39():123-128. PubMed ID: 28710919
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of ARF2 Relieves Its Repression of Transcription of the K+ Transporter Gene HAK5 in Response to Low Potassium Stress.
    Zhao S; Zhang ML; Ma TL; Wang Y
    Plant Cell; 2016 Dec; 28(12):3005-3019. PubMed ID: 27895227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AtNHX3 is a vacuolar K+/H+ antiporter required for low-potassium tolerance in Arabidopsis thaliana.
    Liu H; Tang R; Zhang Y; Wang C; Lv Q; Gao X; Li W; Zhang H
    Plant Cell Environ; 2010 Nov; 33(11):1989-99. PubMed ID: 20573049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel AtKEA gene family, homolog of bacterial K+/H+ antiporters, plays potential roles in K+ homeostasis and osmotic adjustment in Arabidopsis.
    Zheng S; Pan T; Fan L; Qiu QS
    PLoS One; 2013; 8(11):e81463. PubMed ID: 24278440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A low K+ signal is required for functional high-affinity K+ uptake through HAK5 transporters.
    Rubio F; Fon M; Ródenas R; Nieves-Cordones M; Alemán F; Rivero RM; Martínez V
    Physiol Plant; 2014 Nov; 152(3):558-70. PubMed ID: 24716623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How DELLAs contribute to control potassium uptake under conditions of potassium scarcity? Hypotheses and uncertainties.
    Oliferuk S; Ródenas R; Pérez A; Martinez V; Rubio F; Santa María GE
    Plant Signal Behav; 2017 Oct; 12(10):e1366396. PubMed ID: 28816584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots.
    Gierth M; Mäser P; Schroeder JI
    Plant Physiol; 2005 Mar; 137(3):1105-14. PubMed ID: 15734909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant sensing and signaling in response to K+-deficiency.
    Wang Y; Wu WH
    Mol Plant; 2010 Mar; 3(2):280-7. PubMed ID: 20339156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The CBL-Interacting Protein Kinase CIPK23 Regulates HAK5-Mediated High-Affinity K+ Uptake in Arabidopsis Roots.
    Ragel P; Ródenas R; García-Martín E; Andrés Z; Villalta I; Nieves-Cordones M; Rivero RM; Martínez V; Pardo JM; Quintero FJ; Rubio F
    Plant Physiol; 2015 Dec; 169(4):2863-73. PubMed ID: 26474642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knockouts of Physcomitrella patens CHX1 and CHX2 transporters reveal high complexity of potassium homeostasis.
    Mottaleb SA; Rodríguez-Navarro A; Haro R
    Plant Cell Physiol; 2013 Sep; 54(9):1455-68. PubMed ID: 23825218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance.
    Shabala S; Pottosin I
    Physiol Plant; 2014 Jul; 151(3):257-79. PubMed ID: 24506225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium transport and signaling in higher plants.
    Wang Y; Wu WH
    Annu Rev Plant Biol; 2013; 64():451-76. PubMed ID: 23330792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport, signaling, and homeostasis of potassium and sodium in plants.
    Adams E; Shin R
    J Integr Plant Biol; 2014 Mar; 56(3):231-49. PubMed ID: 24393374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Complex Fine-Tuning of K⁺ Fluxes in Plants in Relation to Osmotic and Ionic Abiotic Stresses.
    Chérel I; Gaillard I
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30736441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The major facilitator superfamily transporter ZIFL2 modulates cesium and potassium homeostasis in Arabidopsis.
    Remy E; Cabrito TR; Batista RA; Teixeira MC; Sá-Correia I; Duque P
    Plant Cell Physiol; 2015 Jan; 56(1):148-62. PubMed ID: 25378686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane transporters for nitrogen, phosphate and potassium uptake in plants.
    Chen YF; Wang Y; Wu WH
    J Integr Plant Biol; 2008 Jul; 50(7):835-48. PubMed ID: 18713394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory roles of cytokinins and cytokinin signaling in response to potassium deficiency in Arabidopsis.
    Nam YJ; Tran LS; Kojima M; Sakakibara H; Nishiyama R; Shin R
    PLoS One; 2012; 7(10):e47797. PubMed ID: 23112848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles and Transport of Sodium and Potassium in Plants.
    Nieves-Cordones M; Al Shiblawi FR; Sentenac H
    Met Ions Life Sci; 2016; 16():291-324. PubMed ID: 26860305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms involved in plant adaptation to low K(+) availability.
    Chérel I; Lefoulon C; Boeglin M; Sentenac H
    J Exp Bot; 2014 Mar; 65(3):833-48. PubMed ID: 24293613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chloroplast envelope K
    Rodríguez-Rosales MP; Rubio L; Pedersen JT; Aranda-Sicilia MN; Fernández JA; Venema K
    Physiol Plant; 2024; 176(3):e14376. PubMed ID: 38837784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.