BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 28710989)

  • 1. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms.
    Deng S; Gu G; Wu Z; Xu X
    Chemosphere; 2017 Oct; 185():403-411. PubMed ID: 28710989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Humic acid promotes arsenopyrite bio-oxidation and arsenic immobilization.
    Zhang DR; Chen HR; Xia JL; Nie ZY; Fan XL; Liu HC; Zheng L; Zhang LJ; Yang HY
    J Hazard Mater; 2020 Feb; 384():121359. PubMed ID: 31635821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.
    Fantauzzi M; Licheri C; Atzei D; Loi G; Elsener B; Rossi G; Rossi A
    Anal Bioanal Chem; 2011 Oct; 401(7):2237-48. PubMed ID: 21847529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans.
    Makita M; Esperón M; Pereyra B; López A; Orrantia E
    BMC Biotechnol; 2004 Oct; 4():22. PubMed ID: 15482595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A pathway of the generation of acid mine drainage and release of arsenic in the bioleaching of orpiment.
    Shen C; Zhang G; Li K; Yang C
    Chemosphere; 2022 Jul; 298():134287. PubMed ID: 35283152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenic release from arsenopyrite weathering: insights from sequential extraction and microscopic studies.
    Basu A; Schreiber ME
    J Hazard Mater; 2013 Nov; 262():896-904. PubMed ID: 23312782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic release from the abiotic oxidation of arsenopyrite under the impact of waterborne H2O2: a SEM and XPS study.
    Ma Y; Qin Y; Zheng B; Zhang L; Zhao Y
    Environ Sci Pollut Res Int; 2016 Jan; 23(2):1381-90. PubMed ID: 26362642
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential role of thiobacillus caldus in arsenopyrite bioleaching.
    Dopson M; Lindstrom EB
    Appl Environ Microbiol; 1999 Jan; 65(1):36-40. PubMed ID: 9872756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Thermoacidophilic micirobial community oxidizing the gold-bearing flotation concentrate of a pyrite-arsenopyrite ore].
    Paniushkina AE; Tsaplina IA; Grigor'eva NV; Kondrat'eva TF
    Mikrobiologiia; 2014; 83(5):552-64. PubMed ID: 25844467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of bioleaching behaviors of different compositional sphalerite using Leptospirillum ferriphilum, Acidithiobacillus ferrooxidans and Acidithiobacillus caldus.
    Xia L; Dai S; Yin C; Hu Y; Liu J; Qiu G
    J Ind Microbiol Biotechnol; 2009 Jun; 36(6):845-51. PubMed ID: 19333635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources.
    Chen P; Yan L; Leng F; Nan W; Yue X; Zheng Y; Feng N; Li H
    Bioresour Technol; 2011 Feb; 102(3):3260-7. PubMed ID: 21146407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and surface analysis during evolution of arsenopyrite oxidation by Acidithiobacillus thiooxidans in the presence and absence of supplementary arsenic.
    Ramírez-Aldaba H; Valles OP; Vazquez-Arenas J; Rojas-Contreras JA; Valdez-Pérez D; Ruiz-Baca E; Meraz-Rodríguez M; Sosa-Rodríguez FS; Rodríguez ÁG; Lara RH
    Sci Total Environ; 2016 Oct; 566-567():1106-1119. PubMed ID: 27312277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of Critical Sulfur- and Iron-Oxidation Genes and the Community Dynamics During Bioleaching of Chalcopyrite Concentrate by Moderate Thermophiles.
    Zhou D; Peng T; Zhou H; Liu X; Gu G; Chen M; Qiu G; Zeng W
    Curr Microbiol; 2015 Jul; 71(1):62-9. PubMed ID: 25941022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic stability in arsenopyrite-rich cemented paste backfills: a leaching test-based assessment.
    Coussy S; Benzaazoua M; Blanc D; Moszkowicz P; Bussière B
    J Hazard Mater; 2011 Jan; 185(2-3):1467-76. PubMed ID: 21074944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes.
    Park I; Tabelin CB; Seno K; Jeon S; Ito M; Hiroyoshi N
    Chemosphere; 2018 Aug; 205():414-425. PubMed ID: 29704849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Optimization of bioleaching and oxidation of gold-bearing pyrite-arsnopyrite ore concentrate in batch mode].
    Grigor'eva NV; Tsaplina IA; Paniushkina AE; Kondrat'eva TF
    Mikrobiologiia; 2014; 83(5):565-74. PubMed ID: 25844468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Microscopic Analysis of Metal Sulfide Colonization by Acidophilic Microorganisms.
    Bellenberg S; Buetti-Dinh A; Galli V; Ilie O; Herold M; Christel S; Boretska M; Pivkin IV; Wilmes P; Sand W; Vera M; Dopson M
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30076195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of rainwater-borne hydrogen peroxide in the release of arsenic from arsenopyrite.
    Ma Y; Qin Y; Lin C
    Chemosphere; 2014 May; 103():349-53. PubMed ID: 24315179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: significance of microbial interactions.
    Okibe N; Johnson DB
    Biotechnol Bioeng; 2004 Sep; 87(5):574-83. PubMed ID: 15352055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Oxidation of sulfur-containing substrates by aboriginal and experimentally designed microbial communities].
    Pivovarova TA; Bulaev AG; Roshchupko PV; Belyĭ AV; Kondrat'eva TF
    Prikl Biokhim Mikrobiol; 2012; 48(6):640-5. PubMed ID: 23330391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.