These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 2871149)

  • 1. Fluidized bed film coating of an interactive powder mixture to produce microencapsulated 2-5 microns particles.
    Thiel WJ; Sberna FJ
    J Pharm Pharmacol; 1986 Mar; 38(3):166-71. PubMed ID: 2871149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluidized bed film coating of an ordered powder mixture to produce microencapsulated order units.
    Thiel WJ; Nguyen LT
    J Pharm Pharmacol; 1984 Mar; 36(3):145-52. PubMed ID: 6144746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Content uniformity of microdose tablets (dosage 1 microgram--10 mg) produced by fluid bed granulation of interactive mixtures.
    Thiel WJ; Nguyen LT; Sberna FJ
    J Pharm Pharmacol; 1986 May; 38(5):335-43. PubMed ID: 2872308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluidized bed granulation of an ordered powder mixture.
    Thiel WJ; Nguyen LT
    J Pharm Pharmacol; 1982 Nov; 34(11):692-9. PubMed ID: 6129297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interparticle forces in binary and ternary ordered powder mixes.
    Staniforth JN; Rees JE; Lai FK; Hersey JA
    J Pharm Pharmacol; 1982 Mar; 34(3):141-5. PubMed ID: 6121889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The coating and the encapsulation of an interactive powder mixture and its application to sustained release preparations.
    Yoshizawa H; Koishi M
    J Pharm Pharmacol; 1990 Oct; 42(10):673-8. PubMed ID: 1982136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coating of pharmaceutical powders by fluidized bed process. II. Microcapsules produced by layering of fine powder on coarse particles and subsequent aqueous enteric coating.
    Fukumori Y; Yamaoka Y; Ichikawa H; Fukuda T; Takeuchi Y; Osako Y
    Chem Pharm Bull (Tokyo); 1988 Apr; 36(4):1491-501. PubMed ID: 3416369
    [No Abstract]   [Full Text] [Related]  

  • 8. Incorporation of surface-modified dry micronized poorly water-soluble drug powders into polymer strip films.
    Zhang L; Li Y; Abed M; Davé RN
    Int J Pharm; 2018 Jan; 535(1-2):462-472. PubMed ID: 29170115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Granulation of core particles suitable for film coating by agitation fluidized bed I. Optimum formulation for core particles and development of a novel friability test method.
    Hamashita T; Nakagawa Y; Aketo T; Watano S
    Chem Pharm Bull (Tokyo); 2007 Aug; 55(8):1169-74. PubMed ID: 17666839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of dry powder inhalation with lactose carrier particles surface-coated using a Wurster fluidized bed.
    Iida K; Todo H; Okamoto H; Danjo K; Leuenberger H
    Chem Pharm Bull (Tokyo); 2005 Apr; 53(4):431-4. PubMed ID: 15802846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of a change in crystal polymorph on the degree of adhesion between micronized drug particles and large homogenous carrier particles during an interactive mixing process.
    Song M; de Villiers MM
    Pharm Dev Technol; 2004 Nov; 9(4):387-98. PubMed ID: 15581075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microagglomeration of pulverized pharmaceutical powders using the Wurster process I. Preparation of highly drug-incorporated, subsieve-sized core particles for subsequent microencapsulation by film-coating.
    Ichikawa H; Fukumori Y
    Int J Pharm; 1999 Apr; 180(2):195-210. PubMed ID: 10370190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of film coating process in a novel rotating fluidized bed.
    Nakamura H; Iwasaki T; Watano S
    Chem Pharm Bull (Tokyo); 2006 Jun; 54(6):839-46. PubMed ID: 16755055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A New Role of Fine Excipient Materials in Carrier-Based Dry Powder Inhalation Mixtures: Effect on Deagglomeration of Drug Particles During Mixing Revealed.
    Shalash AO; Elsayed MMA
    AAPS PharmSciTech; 2017 Nov; 18(8):2862-2870. PubMed ID: 28421352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Approach for Dry Powder Coating of Pellets with Ethylcellulose. Part II: Evaluation of Caffeine Release.
    Albertini B; Melegari C; Bertoni S; Dolci LS; Passerini N
    AAPS PharmSciTech; 2018 Apr; 19(3):1426-1436. PubMed ID: 29441468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content.
    Shalash AO; Molokhia AM; Elsayed MM
    Eur J Pharm Biopharm; 2015 Oct; 96():291-303. PubMed ID: 26275831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of processing parameters and formulation factors on the drug release from tablets powder-coated with Eudragit L 100-55.
    Sauer D; Zheng W; Coots LB; McGinity JW
    Eur J Pharm Biopharm; 2007 Sep; 67(2):464-75. PubMed ID: 17451929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air permeability of powder: a potential tool for Dry Powder Inhaler formulation development.
    Le VN; Robins E; Flament MP
    Eur J Pharm Biopharm; 2010 Nov; 76(3):464-9. PubMed ID: 20854906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applying a novel electrostatic dry powder coating technology to pellets.
    Yang Q; Ma Y; Zhu J
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):118-24. PubMed ID: 26478275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spray-coating for biopharmaceutical powder formulations: beyond the conventional scale and its application.
    Maa YF; Ameri M; Rigney R; Payne LG; Chen D
    Pharm Res; 2004 Mar; 21(3):515-23. PubMed ID: 15070104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.