BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 28711655)

  • 1. Ubiquitination at the mitochondria in neuronal health and disease.
    Covill-Cooke C; Howden JH; Birsa N; Kittler JT
    Neurochem Int; 2018 Jul; 117():55-64. PubMed ID: 28711655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial E3 ubiquitin ligase 1 (MUL1) as a novel therapeutic target for diseases associated with mitochondrial dysfunction.
    Calle X; Garrido-Moreno V; Lopez-Gallardo E; Norambuena-Soto I; Martínez D; Peñaloza-Otárola A; Troncossi A; Guerrero-Moncayo A; Ortega A; Maracaja-Coutinho V; Parra V; Chiong M; Lavandero S
    IUBMB Life; 2022 Sep; 74(9):850-865. PubMed ID: 35638168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial quality control in neurodegenerative diseases.
    Dupuis L
    Biochimie; 2014 May; 100():177-83. PubMed ID: 23958438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL.
    Koyano F; Yamano K; Kosako H; Tanaka K; Matsuda N
    J Biol Chem; 2019 Jun; 294(26):10300-10314. PubMed ID: 31110043
    [No Abstract]   [Full Text] [Related]  

  • 5. Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan.
    Rana A; Rera M; Walker DW
    Proc Natl Acad Sci U S A; 2013 May; 110(21):8638-43. PubMed ID: 23650379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of neuronal Miro1 disrupts mitophagy and induces hyperactivation of the integrated stress response.
    López-Doménech G; Howden JH; Covill-Cooke C; Morfill C; Patel JV; Bürli R; Crowther D; Birsa N; Brandon NJ; Kittler JT
    EMBO J; 2021 Jul; 40(14):e100715. PubMed ID: 34152608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-clearance mechanism of mitochondrial E3 ligase MARCH5 contributes to mitochondria quality control.
    Kim SH; Park YY; Yoo YS; Cho H
    FEBS J; 2016 Jan; 283(2):294-304. PubMed ID: 26476016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chronic and age-dependent effects of the spongiform neurodegeneration-associated MGRN1 E3 ubiquitin ligase on mitochondrial homeostasis.
    Gunn TM; Silvius D; Lester A; Gibbs B
    Mamm Genome; 2019 Jun; 30(5-6):151-165. PubMed ID: 31089807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ubiquitin and Receptor-Dependent Mitophagy Pathways and Their Implication in Neurodegeneration.
    Fritsch LE; Moore ME; Sarraf SA; Pickrell AM
    J Mol Biol; 2020 Apr; 432(8):2510-2524. PubMed ID: 31689437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative proteomic analysis of Parkin substrates in Drosophila neurons.
    Martinez A; Lectez B; Ramirez J; Popp O; Sutherland JD; Urbé S; Dittmar G; Clague MJ; Mayor U
    Mol Neurodegener; 2017 Apr; 12(1):29. PubMed ID: 28399880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial E3 ubiquitin ligase 1: A key enzyme in regulation of mitochondrial dynamics and functions.
    Peng J; Ren KD; Yang J; Luo XJ
    Mitochondrion; 2016 May; 28():49-53. PubMed ID: 27034206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deubiquitinating enzymes regulate PARK2-mediated mitophagy.
    Wang Y; Serricchio M; Jauregui M; Shanbhag R; Stoltz T; Di Paolo CT; Kim PK; McQuibban GA
    Autophagy; 2015 Apr; 11(4):595-606. PubMed ID: 25915564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parkin-mediated ubiquitylation redistributes MITOL/March5 from mitochondria to peroxisomes.
    Koyano F; Yamano K; Kosako H; Kimura Y; Kimura M; Fujiki Y; Tanaka K; Matsuda N
    EMBO Rep; 2019 Dec; 20(12):e47728. PubMed ID: 31602805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms underlying PINK1 and Parkin catalyzed ubiquitylation of substrates on damaged mitochondria.
    Koyano F; Matsuda N
    Biochim Biophys Acta; 2015 Oct; 1853(10 Pt B):2791-6. PubMed ID: 25700839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glutamate excitotoxicity in neurons triggers mitochondrial and endoplasmic reticulum accumulation of Parkin, and, in the presence of N-acetyl cysteine, mitophagy.
    Van Laar VS; Roy N; Liu A; Rajprohat S; Arnold B; Dukes AA; Holbein CD; Berman SB
    Neurobiol Dis; 2015 Feb; 74():180-93. PubMed ID: 25478815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of proteasome reveals basal mitochondrial ubiquitination.
    Sulkshane P; Duek I; Ram J; Thakur A; Reis N; Ziv T; Glickman MH
    J Proteomics; 2020 Oct; 229():103949. PubMed ID: 32882436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mdm2 enhances ligase activity of parkin and facilitates mitophagy.
    Kook S; Zhan X; Thibeault K; Ahmed MR; Gurevich VV; Gurevich EV
    Sci Rep; 2020 Mar; 10(1):5028. PubMed ID: 32193420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal Preconditioning Requires the Mitophagic Activity of C-terminus of HSC70-Interacting Protein.
    Lizama BN; Palubinsky AM; Raveendran VA; Moore AM; Federspiel JD; Codreanu SG; Liebler DC; McLaughlin B
    J Neurosci; 2018 Aug; 38(31):6825-6840. PubMed ID: 29934347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parkin Is Dispensable for Mitochondrial Function, but Its Ubiquitin Ligase Activity Is Critical for Macroautophagy and Neurotransmitters: Therapeutic Potential beyond Parkinson's Disease.
    Moussa CE
    Neurodegener Dis; 2015; 15(5):259-70. PubMed ID: 26160424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mul1 restrains Parkin-mediated mitophagy in mature neurons by maintaining ER-mitochondrial contacts.
    Puri R; Cheng XT; Lin MY; Huang N; Sheng ZH
    Nat Commun; 2019 Aug; 10(1):3645. PubMed ID: 31409786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.