These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 28711673)

  • 1. On-line prediction of the glucose concentration of CHO cell cultivations by NIR and Raman spectroscopy: Comparative scalability test with a shake flask model system.
    Kozma B; Hirsch E; Gergely S; Párta L; Pataki H; Salgó A
    J Pharm Biomed Anal; 2017 Oct; 145():346-355. PubMed ID: 28711673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line glucose monitoring by near infrared spectroscopy during the scale up steps of mammalian cell cultivation process development.
    Kozma B; Salgó A; Gergely S
    Bioprocess Biosyst Eng; 2019 Jun; 42(6):921-932. PubMed ID: 30806782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raman-based dynamic feeding strategies using real-time glucose concentration monitoring system during adalimumab producing CHO cell cultivation.
    Domján J; Fricska A; Madarász L; Gyürkés M; Köte Á; Farkas A; Vass P; Fehér C; Horváth B; Könczöl K; Pataki H; Nagy ZK; Marosi GJ; Hirsch E
    Biotechnol Prog; 2020 Nov; 36(6):e3052. PubMed ID: 32692473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of multivariate data analysis techniques to improve glucose concentration prediction in mammalian cell cultivations by Raman spectroscopy.
    Kozma B; Salgó A; Gergely S
    J Pharm Biomed Anal; 2018 Sep; 158():269-279. PubMed ID: 29894949
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures.
    Amanullah A; Otero JM; Mikola M; Hsu A; Zhang J; Aunins J; Schreyer HB; Hope JA; Russo AP
    Biotechnol Bioeng; 2010 May; 106(1):57-67. PubMed ID: 20073088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.
    Berry BN; Dobrowsky TM; Timson RC; Kshirsagar R; Ryll T; Wiltberger K
    Biotechnol Prog; 2016; 32(1):224-34. PubMed ID: 26587969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemometrics and in-line near infrared spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture: prediction of multiple cultivation variables.
    Clavaud M; Roggo Y; Von Daeniken R; Liebler A; Schwabe JO
    Talanta; 2013 Jul; 111():28-38. PubMed ID: 23622522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors.
    Rowland-Jones RC; van den Berg F; Racher AJ; Martin EB; Jaques C
    Biotechnol Prog; 2017 Mar; 33(2):337-346. PubMed ID: 28271638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring mAb cultivations with in-situ raman spectroscopy: The influence of spectral selectivity on calibration models and industrial use as reliable PAT tool.
    Santos RM; Kessler JM; Salou P; Menezes JC; Peinado A
    Biotechnol Prog; 2018 May; 34(3):659-670. PubMed ID: 29603907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method to transfer Chinese hamster ovary (CHO) batch shake flask experiments to large-scale, computer-controlled fed-batch bioreactors.
    Klaubert SR; Chitwood DG; Dahodwala H; Williamson M; Kasper R; Lee KH; Harcum SW
    Methods Enzymol; 2021; 660():297-320. PubMed ID: 34742394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. At-line NIR spectroscopy as effective PAT monitoring technique in Mab cultivations during process development and manufacturing.
    Hakemeyer C; Strauss U; Werz S; Jose GE; Folque F; Menezes JC
    Talanta; 2012 Feb; 90():12-21. PubMed ID: 22340110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semisynthetic model calibration for monitoring glucose in mammalian cell culture with in situ near infrared spectroscopy.
    Milligan M; Lewin-Koh N; Coleman D; Arroyo A; Saucedo V
    Biotechnol Bioeng; 2014 May; 111(5):896-903. PubMed ID: 24284833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated Data Generation for Raman Spectroscopy Calibrations in Multi-Parallel Mini Bioreactors.
    Graf A; Woodhams A; Nelson M; Richardson DD; Short SM; Brower M; Hoehse M
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35591088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of chemometric models applied to Raman spectroscopy for monitoring key metabolites of cell culture.
    Rafferty C; Johnson K; O'Mahony J; Burgoyne B; Rea R; Balss KM
    Biotechnol Prog; 2020 Jul; 36(4):e2977. PubMed ID: 32012476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-scale predictive modeling of CHO cell culture growth and metabolites using Raman spectroscopy and multivariate analysis.
    Berry B; Moretto J; Matthews T; Smelko J; Wiltberger K
    Biotechnol Prog; 2015; 31(2):566-77. PubMed ID: 25504860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. At-line raman spectroscopy and design of experiments for robust monitoring and control of miniature bioreactor cultures.
    Rowland-Jones RC; Jaques C
    Biotechnol Prog; 2019 Mar; 35(2):e2740. PubMed ID: 30378770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared spectroscopy based monitoring of all 20 amino acids in mammalian cell culture broth.
    Hubli GB; Banerjee S; Rathore AS
    Talanta; 2023 Mar; 254():124187. PubMed ID: 36549134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-line near infrared bioreactor monitoring of cell density and concentrations of glucose and lactate during insect cell cultivation.
    Qiu J; Arnold MA; Murhammer DW
    J Biotechnol; 2014 Mar; 173():106-11. PubMed ID: 24452098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an in-line Raman analytical method for commercial-scale CHO cell culture process monitoring: Influence of measurement channels and batch number on model performance.
    Yan X; Dong X; Wan Y; Gao D; Chen Z; Zhang Y; Zheng Z; Chen K; Jiao J; Sun Y; He Z; Nie L; Fan X; Wang H; Qu H
    Biotechnol J; 2024 Jan; 19(1):e2300395. PubMed ID: 38180295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia influences protein transport and epigenetic repression of CHO cell cultures in shake flasks.
    Qian Y; Xing Z; Lee S; Mackin NA; He A; Kayne PS; He Q; Qian NX; Li ZJ
    Biotechnol J; 2014 Nov; 9(11):1413-24. PubMed ID: 25271019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.