These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 28711673)
21. Non-invasive and time-resolved measurement of the respiration activity of Chinese hamster ovary cells enables prediction of key culture parameters in shake flasks. Ihling N; Munkler LP; Paul R; Berg C; Reichenbächer B; Kadisch M; Lang D; Büchs J Biotechnol J; 2022 Aug; 17(8):e2100677. PubMed ID: 35377965 [TBL] [Abstract][Full Text] [Related]
22. Validation of the transferability of membrane-based fed-batch shake flask cultivations to stirred-tank reactor using three different protease producing Bacillus strains. Müller J; Hütterott A; Habicher T; Mußmann N; Büchs J J Biosci Bioeng; 2019 Nov; 128(5):599-605. PubMed ID: 31151898 [TBL] [Abstract][Full Text] [Related]
23. Application of multivariate analysis and mass transfer principles for refinement of a 3-L bioreactor scale-down model--when shake flasks mimic 15,000-L bioreactors better. Ahuja S; Jain S; Ram K Biotechnol Prog; 2015; 31(5):1370-80. PubMed ID: 26097232 [TBL] [Abstract][Full Text] [Related]
24. Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bioprocesses. Roychoudhury P; O'Kennedy R; McNeil B; Harvey LM Anal Chim Acta; 2007 May; 590(1):110-7. PubMed ID: 17416230 [TBL] [Abstract][Full Text] [Related]
25. Comparative study of non-invasive monitoring via infrared spectroscopy for mammalian cell cultivations. Sandor M; Rüdinger F; Bienert R; Grimm C; Solle D; Scheper T J Biotechnol; 2013 Dec; 168(4):636-45. PubMed ID: 23948256 [TBL] [Abstract][Full Text] [Related]
26. Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy. Li B; Ray BH; Leister KJ; Ryder AG Anal Chim Acta; 2013 Sep; 796():84-91. PubMed ID: 24016587 [TBL] [Abstract][Full Text] [Related]
27. A Novel Approach for Non-Invasive Continuous In-Line Control of Perfusion Cell Cultivations by Raman Spectroscopy. Graf A; Lemke J; Schulze M; Soeldner R; Rebner K; Hoehse M; Matuszczyk J Front Bioeng Biotechnol; 2022; 10():719614. PubMed ID: 35547168 [TBL] [Abstract][Full Text] [Related]
28. Spectroscopy integration to miniature bioreactors and large scale production bioreactors-Increasing current capabilities and model transfer. Rowland-Jones RC; Graf A; Woodhams A; Diaz-Fernandez P; Warr S; Soeldner R; Finka G; Hoehse M Biotechnol Prog; 2021 Jan; 37(1):e3074. PubMed ID: 32865874 [TBL] [Abstract][Full Text] [Related]
29. Optimization of cultivation conditions in spin tubes for Chinese hamster ovary cells producing erythropoietin and the comparison of glycosylation patterns in different cultivation vessels. Strnad J; Brinc M; Spudić V; Jelnikar N; Mirnik L; Carman B; Kravanja Z Biotechnol Prog; 2010; 26(3):653-63. PubMed ID: 20544713 [TBL] [Abstract][Full Text] [Related]
30. Time-Resolved Monitoring of the Oxygen Transfer Rate of Chinese Hamster Ovary Cells Provides Insights Into Culture Behavior in Shake Flasks. Ihling N; Munkler LP; Berg C; Reichenbächer B; Wirth J; Lang D; Wagner R; Büchs J Front Bioeng Biotechnol; 2021; 9():725498. PubMed ID: 34513814 [TBL] [Abstract][Full Text] [Related]
31. Halfway to Automated Feeding of Chinese Hamster Ovary Cells. Tomažič S; Škrjanc I Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514911 [TBL] [Abstract][Full Text] [Related]
32. Robust platform for inline Raman monitoring and control of perfusion cell culture. Wan B; Patel M; Zhou G; Olma M; Bieri M; Mueller M; Appiah-Amponsah E; Patel B; Jayapal K Biotechnol Bioeng; 2024 May; 121(5):1688-1701. PubMed ID: 38393313 [TBL] [Abstract][Full Text] [Related]
33. Fed-batch bioreactor performance and cell line stability evaluation of the artificial chromosome expression technology expressing an IgG1 in Chinese hamster ovary cells. Combs RG; Yu E; Roe S; Piatchek MB; Jones HL; Mott J; Kennard ML; Goosney DL; Monteith D Biotechnol Prog; 2011; 27(1):201-8. PubMed ID: 21312367 [TBL] [Abstract][Full Text] [Related]
34. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review. Buckley K; Ryder AG Appl Spectrosc; 2017 Jun; 71(6):1085-1116. PubMed ID: 28534676 [TBL] [Abstract][Full Text] [Related]
35. Scale-down of CHO cell cultivation from shake flasks based on oxygen mass transfer allows application of parallelized, non-invasive, and time-resolved monitoring of the oxygen transfer rate in 48-well microtiter plates. Ihling N; Berg C; Paul R; Munkler LP; Mäkinen ME; Chotteau V; Büchs J Biotechnol J; 2023 Nov; 18(11):e2300053. PubMed ID: 37424196 [TBL] [Abstract][Full Text] [Related]
36. Generic Chemometric Models for Metabolite Concentration Prediction Based on Raman Spectra. Yousefi-Darani A; Paquet-Durand O; Von Wrochem A; Classen J; Tränkle J; Mertens M; Snelders J; Chotteau V; Mäkinen M; Handl A; Kadisch M; Lang D; Dumas P; Hitzmann B Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898085 [TBL] [Abstract][Full Text] [Related]
38. Workflow for shake flask and plate cultivations with fats for polyhydroxyalkanoate bioproduction. Riedel SL; Donicz EN; Ferré-Aparicio P; Santolin L; Marbà-Ardébol AM; Neubauer P; Junne S Appl Microbiol Biotechnol; 2023 Jul; 107(14):4493-4505. PubMed ID: 37266584 [TBL] [Abstract][Full Text] [Related]
39. Improving reliability of Raman spectroscopy for mAb production by upstream processes during bioprocess development stages. Santos RM; Kaiser P; Menezes JC; Peinado A Talanta; 2019 Jul; 199():396-406. PubMed ID: 30952275 [TBL] [Abstract][Full Text] [Related]
40. Feasibility and performance of cross-clone Raman calibration models in CHO cultivation. Machleid R; Hoehse M; Scholze S; Mazarakis K; Nilsson D; Johansson E; Zehe C; Trygg J; Grimm C; Surowiec I Biotechnol J; 2024 Jan; 19(1):e2300289. PubMed ID: 38015079 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]