These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 28711801)
1. Effect of different nitrogen fertilizer treatments on the conversion of Miscanthus×giganteus to ethanol. Dubis B; Bułkowska K; Lewandowska M; Szempliński W; Jankowski KJ; Idźkowski J; Kordala N; Szymańska K Bioresour Technol; 2017 Nov; 243():731-737. PubMed ID: 28711801 [TBL] [Abstract][Full Text] [Related]
2. Miscanthus as cellulosic biomass for bioethanol production. Lee WC; Kuan WC Biotechnol J; 2015 Jun; 10(6):840-54. PubMed ID: 26013948 [TBL] [Abstract][Full Text] [Related]
3. Effects of fertilizer application and dry/wet processing of Miscanthus x giganteus on bioethanol production. Boakye-Boaten NA; Xiu S; Shahbazi A; Wang L; Li R; Mims M; Schimmel K Bioresour Technol; 2016 Mar; 204():98-105. PubMed ID: 26773953 [TBL] [Abstract][Full Text] [Related]
4. Energy Properties and Biomass Yield of Miscanthus x Giganteus Fertilized by Municipal Sewage Sludge. Voća N; Leto J; Karažija T; Bilandžija N; Peter A; Kutnjak H; Šurić J; Poljak M Molecules; 2021 Jul; 26(14):. PubMed ID: 34299647 [TBL] [Abstract][Full Text] [Related]
5. Influence of fertilisation with sewage sludge-derived preparation on selected soil properties and prairie cordgrass yield. Ociepa E; Mrowiec M; Lach J Environ Res; 2017 Jul; 156():775-780. PubMed ID: 28499248 [TBL] [Abstract][Full Text] [Related]
6. A finalized determinant for complete lignocellulose enzymatic saccharification potential to maximize bioethanol production in bioenergy Alam A; Zhang R; Liu P; Huang J; Wang Y; Hu Z; Madadi M; Sun D; Hu R; Ragauskas AJ; Tu Y; Peng L Biotechnol Biofuels; 2019; 12():99. PubMed ID: 31057665 [TBL] [Abstract][Full Text] [Related]
7. The use of reed canary grass and giant miscanthus in the phytoremediation of municipal sewage sludge. Antonkiewicz J; Kołodziej B; Bielińska EJ Environ Sci Pollut Res Int; 2016 May; 23(10):9505-17. PubMed ID: 26841773 [TBL] [Abstract][Full Text] [Related]
8. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input. Hauggaard-Nielsen H; Lachouani P; Knudsen MT; Ambus P; Boelt B; Gislum R Sci Total Environ; 2016 Jan; 541():1339-1347. PubMed ID: 26479907 [TBL] [Abstract][Full Text] [Related]
9. Glucanocellulosic ethanol: the undiscovered biofuel potential in energy crops and marine biomass. Falter C; Zwikowics C; Eggert D; Blümke A; Naumann M; Wolff K; Ellinger D; Reimer R; Voigt CA Sci Rep; 2015 Sep; 5():13722. PubMed ID: 26324382 [TBL] [Abstract][Full Text] [Related]
10. Modification of properties of energy crops under Polish condition as an effect of sewage sludge application onto degraded soil. Fijalkowski K; Rosikon K; Grobelak A; Hutchison D; Kacprzak MJ J Environ Manage; 2018 Jul; 217():509-519. PubMed ID: 29631240 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production. Li H; Kim NJ; Jiang M; Kang JW; Chang HN Bioresour Technol; 2009 Jul; 100(13):3245-51. PubMed ID: 19289273 [TBL] [Abstract][Full Text] [Related]
12. Enhanced hydrolysis of lignocellulosic biomass: Bi-functional enzyme complexes expressed in Pichia pastoris improve bioethanol production from Miscanthus sinensis. Shin SK; Hyeon JE; Kim YI; Kang DH; Kim SW; Park C; Han SO Biotechnol J; 2015 Dec; 10(12):1912-9. PubMed ID: 26479167 [TBL] [Abstract][Full Text] [Related]
13. [Effects of grass cover combined with different fertilization regimes on soil nutrients and enzyme activities in apple orchard in Weibei dryland, China.]. Gong QL; Zhai BN; Zheng W; Liu J; Zheng ZX; Zhao ZY; Li ZY; Wang ZH Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):205-212. PubMed ID: 29692029 [TBL] [Abstract][Full Text] [Related]
14. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production. Doran-Peterson J; Jangid A; Brandon SK; DeCrescenzo-Henriksen E; Dien B; Ingram LO Methods Mol Biol; 2009; 581():263-80. PubMed ID: 19768628 [TBL] [Abstract][Full Text] [Related]
15. What cell wall components are the best indicators for Adams JMM; Winters AL; Hodgson EM; Gallagher JA Biotechnol Biofuels; 2018; 11():67. PubMed ID: 29563970 [TBL] [Abstract][Full Text] [Related]
16. Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply. Zahoor ; Sun D; Li Y; Wang J; Tu Y; Wang Y; Hu Z; Zhou S; Wang L; Xie G; Huang J; Alam A; Peng L Bioresour Technol; 2017 Nov; 243():957-965. PubMed ID: 28738551 [TBL] [Abstract][Full Text] [Related]
17. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii. Joyce BL; Zheljazkov VD; Sykes R; Cantrell CL; Hamilton C; Mann DG; Rodriguez M; Mielenz JR; Astatkie T; Stewart CN PLoS One; 2015; 10(10):e0139195. PubMed ID: 26437026 [TBL] [Abstract][Full Text] [Related]
18. Biochemical suitability of crop residues for cellulosic ethanol: disincentives to nitrogen fertilization in corn agriculture. Gallagher ME; Hockaday WC; Masiello CA; Snapp S; McSwiney CP; Baldock JA Environ Sci Technol; 2011 Mar; 45(5):2013-20. PubMed ID: 21348531 [TBL] [Abstract][Full Text] [Related]
19. Co-production of bio-ethanol, xylonic acid and slow-release nitrogen fertilizer from low-cost straw pulping solid residue. Huang C; Ragauskas AJ; Wu X; Huang Y; Zhou X; He J; Huang C; Lai C; Li X; Yong Q Bioresour Technol; 2018 Feb; 250():365-373. PubMed ID: 29190593 [TBL] [Abstract][Full Text] [Related]
20. Bioethanol production from dedicated energy crops and residues in Arkansas, USA. Ge X; Burner DM; Xu J; Phillips GC; Sivakumar G Biotechnol J; 2011 Jan; 6(1):66-73. PubMed ID: 21086455 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]