These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 28711843)
1. Ecological and environmental transition across the forested-to-open bog ecotone in a west Siberian peatland. Ratcliffe JL; Creevy A; Andersen R; Zarov E; Gaffney PPJ; Taggart MA; Mazei Y; Tsyganov AN; Rowson JG; Lapshina ED; Payne RJ Sci Total Environ; 2017 Dec; 607-608():816-828. PubMed ID: 28711843 [TBL] [Abstract][Full Text] [Related]
2. Role of recent climate change on carbon sequestration in peatland systems. Lunt PH; Fyfe RM; Tappin AD Sci Total Environ; 2019 Jun; 667():348-358. PubMed ID: 30833238 [TBL] [Abstract][Full Text] [Related]
3. Key periods of peatland development and environmental changes in the middle taiga zone of Western Siberia during the Holocene. Tsyganov AN; Zarov EA; Mazei YA; Kulkov MG; Babeshko KV; Yushkovets SY; Payne RJ; Ratcliffe JL; Fatyunina YA; Zazovskaya EP; Lapshina ED Ambio; 2021 Nov; 50(11):1896-1909. PubMed ID: 33825155 [TBL] [Abstract][Full Text] [Related]
4. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Frost GV; Epstein HE Glob Chang Biol; 2014 Apr; 20(4):1264-77. PubMed ID: 24115456 [TBL] [Abstract][Full Text] [Related]
5. Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration. Magnan G; Sanderson NK; Piilo S; Pratte S; Väliranta M; van Bellen S; Zhang H; Garneau M Glob Chang Biol; 2022 Mar; 28(5):1919-1934. PubMed ID: 34882914 [TBL] [Abstract][Full Text] [Related]
6. Shortening fire return interval predisposes west-central Canadian boreal peatlands to more rapid vegetation growth and transition to forest cover. Jones EA; Chasmer LE; Devito KJ; Hopkinson CD Glob Chang Biol; 2024 Feb; 30(2):e17185. PubMed ID: 38361266 [TBL] [Abstract][Full Text] [Related]
7. Peatland plant communities under global change: negative feedback loops counteract shifts in species composition. Hedwall PO; Brunet J; Rydin H Ecology; 2017 Jan; 98(1):150-161. PubMed ID: 28052390 [TBL] [Abstract][Full Text] [Related]
8. Linking ecosystem function and hydrologic regime to inform restoration of a forested peatland. Schulte ML; McLaughlin DL; Wurster FC; Balentine K; Speiran GK; Aust WM; Stewart RD; Varner JM; Jones CN J Environ Manage; 2019 Mar; 233():342-351. PubMed ID: 30590264 [TBL] [Abstract][Full Text] [Related]
9. Emerging forest-peatland bistability and resilience of European peatland carbon stores. van der Velde Y; Temme AJAM; Nijp JJ; Braakhekke MC; van Voorn GAK; Dekker SC; Dolman AJ; Wallinga J; Devito KJ; Kettridge N; Mendoza CA; Kooistra L; Soons MB; Teuling AJ Proc Natl Acad Sci U S A; 2021 Sep; 118(38):. PubMed ID: 34521751 [TBL] [Abstract][Full Text] [Related]
10. Paludification reduces black spruce growth rate but does not alter tree water use efficiency in Canadian boreal forested peatlands. Beaulne J; Boucher É; Garneau M; Magnan G For Ecosyst; 2021; 8(1):28. PubMed ID: 34721933 [TBL] [Abstract][Full Text] [Related]
11. Biomonitoring tool for New Zealand peatlands: Testate amoebae and vascular plants as promising bioindicators. McKeown MM; Burge OR; Richardson SJ; Wood JR; Mitchell EAD; Wilmshurst JM J Environ Manage; 2024 Mar; 354():120243. PubMed ID: 38422571 [TBL] [Abstract][Full Text] [Related]
12. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient. Jassey VE; Chiapusio G; Mitchell EA; Binet P; Toussaint ML; Gilbert D Microb Ecol; 2011 Feb; 61(2):374-85. PubMed ID: 20938656 [TBL] [Abstract][Full Text] [Related]
13. Ecology of testate amoebae in an Amazonian peatland and development of a transfer function for palaeohydrological reconstruction. Swindles GT; Reczuga M; Lamentowicz M; Raby CL; Turner TE; Charman DJ; Gallego-Sala A; Valderrama E; Williams C; Draper F; Honorio Coronado EN; Roucoux KH; Baker T; Mullan DJ Microb Ecol; 2014 Aug; 68(2):284-98. PubMed ID: 24691848 [TBL] [Abstract][Full Text] [Related]
14. Successional change of testate amoeba assemblages along a space-for-time sequence of peatland development. Zhang H; Väliranta M; Amesbury MJ; Charman DJ; Laine A; Tuittila ES Eur J Protistol; 2018 Oct; 66():36-47. PubMed ID: 30075360 [TBL] [Abstract][Full Text] [Related]
15. Annual gaseous carbon budgets of forest-to-bog restoration sites are strongly determined by vegetation composition. Creevy AL; Payne RJ; Andersen R; Rowson JG Sci Total Environ; 2020 Feb; 705():135863. PubMed ID: 31972925 [TBL] [Abstract][Full Text] [Related]
16. Hydrological variability of middle European peatland during the Holocene, inferred from subfossil bog pine and bog oak dendrochronology and high-resolution peat multiproxy analysis of the Budwity peatland (northern Poland). Margielewski W; Krąpiec M; Buczek K; Szychowska-Krąpiec E; Korzeń K; Niska M; Stachowicz-Rybka R; Wojtal AZ; Mroczkowska A; Obidowicz A; Sala D; Drzewicki W; Barniak J; Urban J Sci Total Environ; 2024 Jun; 931():172925. PubMed ID: 38697551 [TBL] [Abstract][Full Text] [Related]
17. Unraveling past impacts of climate change and land management on historic peatland development using proxy-based reconstruction, monitoring data and process modeling. Heinemeyer A; Swindles GT Glob Chang Biol; 2018 Sep; 24(9):4131-4142. PubMed ID: 29738631 [TBL] [Abstract][Full Text] [Related]