These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 2871195)

  • 21. F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations.
    Hicks DB; Liu J; Fujisawa M; Krulwich TA
    Biochim Biophys Acta; 2010 Aug; 1797(8):1362-77. PubMed ID: 20193659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the Na+/H+ antiporter of alkalophilic bacilli in vivo: delta psi-dependent 22Na+ efflux from whole cells.
    Garcia ML; Guffanti AA; Krulwich TA
    J Bacteriol; 1983 Dec; 156(3):1151-7. PubMed ID: 6315677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioenergetic properties of alkalophilic Bacillus sp. strain C-59 on an alkaline medium containing K2CO3.
    Kitada M; Horikoshi K
    J Bacteriol; 1987 Dec; 169(12):5761-5. PubMed ID: 2824446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations.
    Laubinger W; Dimroth P
    Biochemistry; 1989 Sep; 28(18):7194-8. PubMed ID: 2554965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Na+-H+ antiporter of rat colonic basolateral membrane vesicles.
    Dudeja PK; Foster ES; Brasitus TA
    Am J Physiol; 1989 Oct; 257(4 Pt 1):G624-32. PubMed ID: 2552827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Features of apparent nonchemiosmotic energization of oxidative phosphorylation by alkaliphilic Bacillus firmus OF4.
    Guffanti AA; Krulwich TA
    J Biol Chem; 1992 May; 267(14):9580-8. PubMed ID: 1577797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis.
    Pitard B; Richard P; Duñach M; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstitution of a bacterial Na+/H+ antiporter.
    Seto-Young D; Garcia ML; Krulwich TA
    J Biol Chem; 1985 Sep; 260(21):11393-5. PubMed ID: 2995331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATP-sensitive Na(+)-H+ antiport in type II alveolar epithelial cells.
    Brown SE; Heming TA; Benedict CR; Bidani A
    Am J Physiol; 1991 Dec; 261(6 Pt 1):C954-63. PubMed ID: 1662908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The sodium/proton antiport system in a newly isolated alkalophilic Bacillus sp.
    Kitada M; Onda K; Horikoshi K
    J Bacteriol; 1989 Apr; 171(4):1879-84. PubMed ID: 2539355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between the Na+/H+ antiporter and Na+/substrate symport in Bacillus alcalophilus.
    Guffanti AA; Cohn DE; Kaback HR; Krulwich TA
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1481-4. PubMed ID: 6262805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A transmembrane electrical potential generated by respiration is not equivalent to a diffusion potential of the same magnitude for ATP synthesis by Bacillus firmus RAB.
    Guffanti AA; Fuchs RT; Schneier M; Chiu E; Krulwich TA
    J Biol Chem; 1984 Mar; 259(5):2971-5. PubMed ID: 6699003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells.
    Kaim G; Dimroth P
    J Mol Biol; 1995 Nov; 253(5):726-38. PubMed ID: 7473747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Failure of an alkalophilic bacterium to synthesize ATP in response to a valinomycin-induced potassium diffusion potential at high pH.
    Guffanti AA; Chiu E; Krulwich TA
    Arch Biochem Biophys; 1985 Jun; 239(2):327-33. PubMed ID: 4004268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pHin and pHout dependence of the rate of ATP synthesis catalyzed by the chloroplast H(+)-ATPase, CF0F1, in proteoliposomes.
    Possmayer FE; Gräber P
    J Biol Chem; 1994 Jan; 269(3):1896-904. PubMed ID: 8294439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.
    Dimroth P; Cook GM
    Adv Microb Physiol; 2004; 49():175-218. PubMed ID: 15518831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase.
    Nolan DP; Voorheis HP
    Eur J Biochem; 1992 Oct; 209(1):207-16. PubMed ID: 1327770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.