BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 2871195)

  • 21. F1F0-ATP synthases of alkaliphilic bacteria: lessons from their adaptations.
    Hicks DB; Liu J; Fujisawa M; Krulwich TA
    Biochim Biophys Acta; 2010 Aug; 1797(8):1362-77. PubMed ID: 20193659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of the Na+/H+ antiporter of alkalophilic bacilli in vivo: delta psi-dependent 22Na+ efflux from whole cells.
    Garcia ML; Guffanti AA; Krulwich TA
    J Bacteriol; 1983 Dec; 156(3):1151-7. PubMed ID: 6315677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioenergetic properties of alkalophilic Bacillus sp. strain C-59 on an alkaline medium containing K2CO3.
    Kitada M; Horikoshi K
    J Bacteriol; 1987 Dec; 169(12):5761-5. PubMed ID: 2824446
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The sodium ion translocating adenosinetriphosphatase of Propionigenium modestum pumps protons at low sodium ion concentrations.
    Laubinger W; Dimroth P
    Biochemistry; 1989 Sep; 28(18):7194-8. PubMed ID: 2554965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Na+-H+ antiporter of rat colonic basolateral membrane vesicles.
    Dudeja PK; Foster ES; Brasitus TA
    Am J Physiol; 1989 Oct; 257(4 Pt 1):G624-32. PubMed ID: 2552827
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Features of apparent nonchemiosmotic energization of oxidative phosphorylation by alkaliphilic Bacillus firmus OF4.
    Guffanti AA; Krulwich TA
    J Biol Chem; 1992 May; 267(14):9580-8. PubMed ID: 1577797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ATP synthesis by the F0F1 ATP synthase from thermophilic Bacillus PS3 reconstituted into liposomes with bacteriorhodopsin. 2. Relationships between proton motive force and ATP synthesis.
    Pitard B; Richard P; Duñach M; Rigaud JL
    Eur J Biochem; 1996 Feb; 235(3):779-88. PubMed ID: 8654429
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reconstitution of a bacterial Na+/H+ antiporter.
    Seto-Young D; Garcia ML; Krulwich TA
    J Biol Chem; 1985 Sep; 260(21):11393-5. PubMed ID: 2995331
    [TBL] [Abstract][Full Text] [Related]  

  • 29. ATP-sensitive Na(+)-H+ antiport in type II alveolar epithelial cells.
    Brown SE; Heming TA; Benedict CR; Bidani A
    Am J Physiol; 1991 Dec; 261(6 Pt 1):C954-63. PubMed ID: 1662908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemiosmotic energy conversion of the archaebacterial thermoacidophile Sulfolobus acidocaldarius: oxidative phosphorylation and the presence of an F0-related N,N'-dicyclohexylcarbodiimide-binding proteolipid.
    Lübben M; Schäfer G
    J Bacteriol; 1989 Nov; 171(11):6106-16. PubMed ID: 2478523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The sodium/proton antiport system in a newly isolated alkalophilic Bacillus sp.
    Kitada M; Onda K; Horikoshi K
    J Bacteriol; 1989 Apr; 171(4):1879-84. PubMed ID: 2539355
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Relationship between the Na+/H+ antiporter and Na+/substrate symport in Bacillus alcalophilus.
    Guffanti AA; Cohn DE; Kaback HR; Krulwich TA
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1481-4. PubMed ID: 6262805
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A transmembrane electrical potential generated by respiration is not equivalent to a diffusion potential of the same magnitude for ATP synthesis by Bacillus firmus RAB.
    Guffanti AA; Fuchs RT; Schneier M; Chiu E; Krulwich TA
    J Biol Chem; 1984 Mar; 259(5):2971-5. PubMed ID: 6699003
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells.
    Kaim G; Dimroth P
    J Mol Biol; 1995 Nov; 253(5):726-38. PubMed ID: 7473747
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Failure of an alkalophilic bacterium to synthesize ATP in response to a valinomycin-induced potassium diffusion potential at high pH.
    Guffanti AA; Chiu E; Krulwich TA
    Arch Biochem Biophys; 1985 Jun; 239(2):327-33. PubMed ID: 4004268
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The pHin and pHout dependence of the rate of ATP synthesis catalyzed by the chloroplast H(+)-ATPase, CF0F1, in proteoliposomes.
    Possmayer FE; Gräber P
    J Biol Chem; 1994 Jan; 269(3):1896-904. PubMed ID: 8294439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cationic pathway of pH regulation in larvae of Anopheles gambiae.
    Okech BA; Boudko DY; Linser PJ; Harvey WR
    J Exp Biol; 2008 Mar; 211(Pt 6):957-68. PubMed ID: 18310121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bacterial Na+ - or H+ -coupled ATP synthases operating at low electrochemical potential.
    Dimroth P; Cook GM
    Adv Microb Physiol; 2004; 49():175-218. PubMed ID: 15518831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The mitochondrion in bloodstream forms of Trypanosoma brucei is energized by the electrogenic pumping of protons catalysed by the F1F0-ATPase.
    Nolan DP; Voorheis HP
    Eur J Biochem; 1992 Oct; 209(1):207-16. PubMed ID: 1327770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Speculations on the evolution of ion transport mechanisms.
    Wilson TH; Maloney PC
    Fed Proc; 1976 Aug; 35(10):2174-9. PubMed ID: 133032
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.