BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28712012)

  • 1. Development of an MR-compatible hand exoskeleton that is capable of providing interactive robotic rehabilitation during fMRI imaging.
    Kim SJ; Kim Y; Lee H; Ghasemlou P; Kim J
    Med Biol Eng Comput; 2018 Feb; 56(2):261-272. PubMed ID: 28712012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MR-compatible hand exoskeleton for monitoring brain activity during active assistance.
    Kim SJ; Jung Kim
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():5752-5. PubMed ID: 26737599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.
    Hong Kai Yap ; Kamaldin N; Jeong Hoon Lim ; Nasrallah FA; Goh JCH; Chen-Hua Yeow
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):782-793. PubMed ID: 28113591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. fMRI-compatible rehabilitation hand device.
    Khanicheh A; Muto A; Triantafyllou C; Weinberg B; Astrakas L; Tzika A; Mavroidis C
    J Neuroeng Rehabil; 2006 Oct; 3():24. PubMed ID: 17022828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative evaluation of hand functions using a wearable hand exoskeleton system.
    Kim S; Lee J; Park W; Bae J
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1488-1493. PubMed ID: 28814030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pilot study on the design and validation of a hybrid exoskeleton robotic device for hand rehabilitation.
    Haghshenas-Jaryani M; Patterson RM; Bugnariu N; Wijesundara MBJ
    J Hand Ther; 2020; 33(2):198-208. PubMed ID: 32423846
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iHandRehab: an interactive hand exoskeleton for active and passive rehabilitation.
    Li J; Zheng R; Zhang Y; Yao J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975387. PubMed ID: 22275591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints.
    Zhang F; Fu Y; Zhang Q; Wang S
    Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MR_CHIROD v.2: magnetic resonance compatible smart hand rehabilitation device for brain imaging.
    Khanicheh A; Mintzopoulos D; Weinberg B; Tzika AA; Mavroidis C
    IEEE Trans Neural Syst Rehabil Eng; 2008 Feb; 16(1):91-8. PubMed ID: 18303810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and Testing of a Soft Exoskeleton Robotic Hand Training Device.
    Jackson G; Abdullah HA
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
    Grosu V; Grosu S; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An MRI-Guided Telesurgery System Using a Fabry-Perot Interferometry Force Sensor and a Pneumatic Haptic Device.
    Su H; Shang W; Li G; Patel N; Fischer GS
    Ann Biomed Eng; 2017 Aug; 45(8):1917-1928. PubMed ID: 28447178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation and evaluation of soft elastomeric actuators for hand assistive and rehabilitation applications.
    Yap HK; Lim JH; Nasrallah F; Cho Hong Goh J; Yeow CH
    J Med Eng Technol; 2016; 40(4):199-209. PubMed ID: 27007297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ultra-high field strength MR image-guided robotic needle delivery system for in-bore small animal interventions.
    Gravett M; Cepek J; Fenster A
    Med Phys; 2017 Nov; 44(11):5544-5555. PubMed ID: 28849592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A magnetic compatible supernumerary robotic finger for functional magnetic resonance imaging (fMRI) acquisitions: Device description and preliminary results.
    Hussain I; Santarnecchi E; Leo A; Ricciardi E; Rossi S; Prattichizzo D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1177-1182. PubMed ID: 28813981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of an MRI-compatible robotic stereotactic device for minimally invasive interventions in the breast.
    Larson BT; Erdman AG; Tsekos NV; Yacoub E; Tsekos PV; Koutlas IG
    J Biomech Eng; 2004 Aug; 126(4):458-65. PubMed ID: 15543863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tracking device for a wearable high-DOF passive hand exoskeleton.
    Casas R; Martin K; Sandison M; Lum PS
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6643-6646. PubMed ID: 34892631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and validation of a MR-compatible pneumatic manipulandum.
    Suminski AJ; Zimbelman JL; Scheidt RA
    J Neurosci Methods; 2007 Jul; 163(2):255-66. PubMed ID: 17498811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensing and Force-Feedback Exoskeleton (SAFE) Robotic Glove.
    Ben-Tzvi P; Ma Z
    IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):992-1002. PubMed ID: 25494512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.
    Leonardis D; Barsotti M; Loconsole C; Solazzi M; Troncossi M; Mazzotti C; Castelli VP; Procopio C; Lamola G; Chisari C; Bergamasco M; Frisoli A
    IEEE Trans Haptics; 2015; 8(2):140-51. PubMed ID: 25838528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.